

Correlation and Palaeontology of the Coal Measures in East Glamorganshire

David Davies

Phil. Trans. R. Soc. Lond. B 1929 **217**, 91-153 doi: 10.1098/rstb.1929.0003

References

Article cited in:

corner of the article or click here

Email alerting service

http://rstb.royalsocietypublishing.org/content/217/440-449/91.citation#related-urls Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

To subscribe to Phil. Trans. R. Soc. Lond. B go to: http://rstb.royalsocietypublishing.org/subscriptions

[91]

III. Correlation and Palcontology of the Coal Measures in East Glamorganshire.

By DAVID DAVIES, M.Sc. (Wales), F.G.S.

Communicated by Dr. P. F. KENDALL, F.R.S.

(Received May 20,-Read June 30, 1927.)

(PLATES 34-40.)

CONTENTS.

		PAGE
I.	Distribution of the Coal Seams	91
II.	Ecology: Floral Assemblages. (With Table A)	99
III.	Tabulation of Species	107
IV.	Divergence and Convergence of Species. (With Table B)	124
• V.	Fauna—Tabulation of Species	128
	Deductions on Character of Seams, Lithology of the Strata, etc. (With Table C)	
VII.	Conclusion	149
VIII.	Literature	153

THE following Paper gives the results of an investigation of the Flora and Fauna associated with the various coal seams in a part of the South Wales Coalfield.

An account of the ecology of some of the lower seams was given in 'Quart. Jl. Geol. Soc.,' vol. 77, 1921, and a preliminary list of the species recorded from the Westphalian and lower part of the Staffordian Measures was given, in 1920, to the Manchester Institution of Mining Engineers ('Transacts.,' vol. 59, Part III).

I. DISTRIBUTION OF THE COAL SEAMS. (See Locality Plan.)

The district with which this paper is concerned covers about 30 square miles in the eastern part of Glamorganshire, and includes the triangular area between Merthyr Tydfil in the North to Llantrisant in the South, a distance of 14 miles, and to Gilfach Goch in the West. The geological structure of the area is described in the 'Memoirs of the Geological Survey.'*

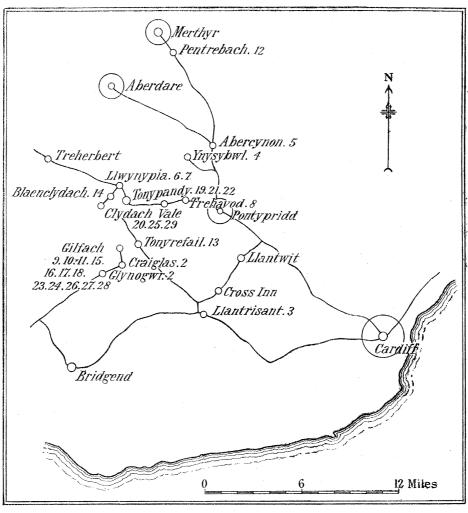
At Gilfach Goch, the well-known anticline that runs eastward to Pontypridd divides the area into two distinct troughs or synclines. In the southern trough, seams have been worked at Beddau, Cross Inn, Castellau, Trefyrig (Tonyrefail), Craiglas (Gilfach

* "The Geology of the South Wales Coalfield." "The Country around Merthyr Tydfil." "The Country around Pontypridd," by A. STRAHAN and others.

VOL. CCXVII.—B 442.

Q

[Published January 2, 1929.]



92 D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

Goch) and Glynogwr. In the northern trough, seams have been worked at Gilfach Goch, Clydach Vale, Llwynypia, Penygraig, Tonyrefail (Gelligron), Ynysybwl (Upper), Abercynon and Merthyr Tydfil.

The southern trough, with its steep dips from the anticlinal ridge, brings in the Upper Pennant Series (or Radstockian), containing in descending order the numbers 1, 2, and 3 Llantwit Seams, the number 3 Llantwit Seam being the base of the Radstockian Series. The seams worked on the north side of the anticline belong, some to the Lower Pennant Series or Staffordian and others to the White Ash Series (or Westphalian). The base of the Lower Pennant (or Staffordian) is placed by the writer at the horizon of the well-known No. 3 Rhondda Seam, and this is confirmed by Dr. KIDSTON in his latest classification of the coal seams, contained in a list forwarded to the writer in March, 1924.

Coal Seams, Locality Plan.

Eighteen seams occur in the White Ash Series (or Westphalian), namely (in ascending order): Gellideg, Five Feet or (Seven Feet) Middle Yard, Upper Yard, or (Bute) Lower Nine Feet, Nine Feet, Six Feet, Four Feet, Four Feet Rider, Two Feet Nine,

Three Coals (B), Lower Gorllwyn, Gorllwyn, Lower Pentre, Pentre, Abergorky, Hafod and Hafod Rider Seams. Eight seams occur in the Staffordian Series, namely (in ascending order): No. 3 Rhondda, Three Coals (A), No. 2 Rhondda, Fforest Fach, No. 1 Rhondda, No. 1 Rhondda Rider, Cefn Glas and Daran Ddu Seams. Three seams are found in the Radstockian Series and are persistent in the limited area in which the series is still preserved, while the underlying White Ash or Westphalian Series extend to the lowest coal seam, the Gellideg.

The lithology of the measures shows 90 per cent. sandstone in the Radstockian and Staffordian Series, with the Westphalian Series in marked contrast, consisting of shale to the extent of about 80 per cent. The total thickness of strata in the three groups is about 1,150 yards, of which the 29 coal seams examined make altogether 103 feet thickness of coal.

TABULATION OF COAL SEAMS WITH LOCALITIES.

Localities (where examined).

Name.

Horizon No.

Westphalian or White Ash Series :---29 . . . Gellideg Seam or Lower Five Feet Seam or No. 3 Pit, Cambrian Collieries, Clydach Vale. No. 3 Yard Seam. 28 . . . Five Feet Seam or Seven Feet Seam Britannic Colliery, Gilfach Goch. . . Middle Yard Seam or No. 2 Yard Seam . Britannic Colliery, Gilfach Goch. 27 . . . Upper Yard or Bute Seam Britannic Colliery, Gilfach Goch. 26. . . Lower Nine Feet Seam No. 2 Pit, Cambrian Collieries, Clydach Vale. 25 24 . . Trane Colliery, Gilfach Goch. Nine Feet Seam 23 . . Six Feet Seam Trane Colliery, Gilfach Goch. Four Feet Seam 22 . . Nantgwyn Colliery, Penygraig. . Upper Four Feet Seam or Rider Seam . . 21 . . . Nantgwyn Colliery, Penygraig. Two Feet Nine Seam No. 1 Pit, Cambrian Collieries, Clydach Vale. 20 . . . "Three Coal" Seam (B) or Upper Two Feet 19 . . . Pandy Pit, Penygraig. Nine Seam, or No. 1 Yard Seam. Lower Gorllwyn Seam 18 . . . Trane Colliery, Gilfach Goch. 17 . . . Upper Gorllwyn Seam Trane Colliery, Gilfach Goch. Lower Pentre Seam Trane Colliery, Gilfach Goch. 16 . . . Pentre Seam or Upper Pentre Seam . . . Trane Colliery, Gilfach Goch. 15 . . . Abergorky Seam Blaenclydach Colliery, Clydach Vale. 14 . . . 13 . . . Gelli Gron Drift, Tonyrefail. Hafod Rider Seam 12 . . . Hills Plymouth Collieries, Merthyr. Level. Staffordian or Lower Pennant Series :---11 . . . No. 3 Rhondda Seam Glamorgan Colliery, Gilfach Goch. Glynogwr Colliery, Gilfach Goch. Dinas Main Level, Gilfach Goch. 10 . . . Three Coals Seam (A) 9 . . . No. 2 Rhondda Seam Fforest Fach Seam . . . Hafod Rhondda Colliery, Hafod. No. 1 Rhondda Seam 7 . . Llwynypia Level, Glamorgan Collieries, . Llwynypia. No. 1 Rhondda Rider Seam 6 . . . Llwynypia Level, Glamorgan Collieries, Llwvnypia. Cefn Glas or Red Ash Seam Carn Colliery Level, Abercynon. 5 Daran Ddu Seam or Penygroes Seam . . 4 . . . Mynachdy Level, Ynysybwl. Radstockian or Upper Pennant Series :---3 . . . No. 3 Llantwit Seam Old Coal Pit, Cross Inn, and Old Coal Pit, Castellau, near Llantrisant. No. 2 Llantwit Seam 2 . . .Glynogwr, Graiglas, and Trefyrig Levels. 1 . . . No. 1 Llantwit Seam Beddau Drift, near Dowlais Inn.

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

REMARKS ON SEAMS.

The coal seams met with in the Glamorganshire Coal Measures fall into three distinct types, namely: the "Regional," "Split" and "Local" types. The "Regional" type of seam is one that persists over a wide area; the "Split" type is a sub-division of another seam; the "Local" type is confined to a limited area.

Westphalian Series.

Gellideg Seam.—A "Split" type of seam, probably the true parent of the Five Feet Seam. It is not present beneath the Five Feet Seam throughout the area.

Five Feet Seam.—A "Regional" type of seam, of real value as a starting-point, to correlate the coal seams in an ascending order.

Middle Yard Seam.—A "Regional" type of seam, very thin in section; in many places it thins out to a mere "Rider," and is of no value as a means of correlation.

Upper Yard or Bute Seam.—A "Regional" type of seam well known over a wide area, and of value for purposes of correlation.

Lower Nine Feet Seam.—A "Split" type of seam from which the Nine Feet Seam branches off.

Nine Feet Seam.—A "Regional" type of seam and is well known to be of value in the correlation of the Glamorganshire coal seams.

Six Feet Seam.—Another "Regional" type of seam, and like the Nine Feet Seam, is of value for purposes of correlation.

Four Feet Seam.—Another "Regional" type of seam and of similar importance to the previous seam for purposes of correlation.

Four Feet Rider Seam.—A "Split" type of seam dividing itself from the Four Feet, its parent seam.

Two Feet Nine Seam.—A "Regional" type of seam well known over a wide area and of importance for the correlation of coal seams.

"Three Coals" Seam (B).—A "Split" type of seam branching off from the Two Feet Nine, which is a parent seam.

Lower Gorllwyn Seam.—A thin seam probably of a "Local" type—appearing here and there as a workable seam or as a thin Rider seam, being entirely absent from other places and of no value for purposes of correlation.

Gorllwyn Seam.—A thin seam of a "Regional" type and of no value for purposes of correlation.

Lower Pentre Seam.—This seam lies very close to the Pentre Seam at Gilfach Goch. Probably it is the parent of the Pentre Seam above. It is absent from numerous places, but where found is a "Split" type of seam.

Pentre Seam.—A "Regional" type of seam and very reliable for purposes of correlation.

Abergorky Seam.-A "Regional" type of seam and is very thin in many localities.

Hafod Seam.—Another "Regional" type of seam. Although the seam itself becomes attenuated in numerous places within the area under observation, it is rather a well-known seam, and is of considerable value for correlating purposes.

Hafod "Rider" Seam.—The Hafod Rider belongs to the "Split" type of seam, its parent seam being the Hafod.

Staffordian Series.

No. 3 Rhondda Seam.—A "Regional" type of seam and is most reliable for purposes of correlation.

"Three Coals" Seam (A).—This coal seam is somewhat persistent. The writer has examined the seam in situ, in Glynogwr Drift, Gilfach Goch, Pentre (Rhondda), and also above the No. 3 Rhondda Seam near Hills Plymouth Collieries, Merthyr, yet when the seam is sought in other areas it is found to exist merely as a thin "rider" seam or to have died out altogether. All that can be stated with safety is that the "Three Coals" Seam (A) does exist between the No. 3 Rhondda and No. 2 Rhondda Seams in certain localities, and that at each of the three localities mentioned it shows three welldefined coals with dirt partings. The seam cannot be said to be of a "Regional" type, and in all probability is a "Local" type of seam.

No. 2 Rhondda Seam.—A "Regional" type of seam, well known over a wide area similar to the No. 3 Rhondda Seam.

Fforest Fach Seam.—A "Split" type of seam, the No. 2 Rhondda being its parent seam.

No. 1 Rhondda Seam.—Although thin appears to be of a "Regional" type.

No. 1 Rhondda Rider Seam.—Appears to belong to the "Split" type of seam and to divide off somewhere near the Llwynypia area from the No. 1 Rhondda seam, which is, in all probability, the parent seam.

Cefn Glas Seam.-A " Local " type of seam and does not persist over a wide area.

Daran Ddu Seam.—This seam is the uppermost horizon in the Staffordian Series and is of a "Regional" type. It is very regrettable that the seam is known by so many names. In the Llantrisant area it is known as the "Pencœdcæ" Seam and the "Penygroes" Seam, and at Ynysybwl as the "Daran Ddu" Seam.

Radstockian Series.

No. 3 Llantwit Seam.—A "Regional" type of seam; it appears to persist without dying out or subdividing. Within this limited area the upper coal measures have escaped denudation.

No. 2 Llantwit Seam.—This is another "Regional" type of seam, with its area more limited than the No. 3 Llantwit Seam.

No. 1 Llantwit Seam.—Also a "Regional" type of seam and even more limited in its area than the No. 2 Llantwit Seam.

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

Summarising the above, the Westphalian Series contains eleven seams of "Regional" type, six seams of "Split" type and one of "Local" type. The "Regional" type of seams are the Five Feet Seam, Middle Yard Seam, Upper Yard or Bute Seam, Nine Feet Seam, Six Feet Seam, Four Feet Seam, Two Feet Nine Seam, Gorllwyn Seam, Pentre Seam, Abergorky Seam and Hafod Seam. The "Split" type of seams are the Gellideg Seam, Lower Nine Feet Seam, Four Feet Rider Seam, Three Coals Seam (B), Lower Pentre Seam and the Hafod Rider Seam. The only "Local" type is the Lower Gorllwyn Seam.

The Staffordian Series contains four seams of the "Regional" type, two seams of the "Split" type and two of the "Local" type. The "Regional" type are the No. 3 Rhondda Seam, No. 2 Rhondda Seam, No. 1 Rhondda Seam and Daran Ddu Seam. The "Split" type are the Fforest Fach Seam and No. 1 Rhondda Rider Seam. The "Local" type are the Three Coals Seam (A) and Cefn Glas Seam.

The Radstockian Series contains three "Regional" type of seams, namely: the No. 1, 2 and 3, Llantwit. Thus of the 29 coal seams examined, eighteen are "Regional" in character, eight are of the "Split" type and three of the "Local" type.

TABLE	giving number,	name, thicknes	ss, position, line	eal extent or a	rea and lithological
	composition of	each horizon in	ascending orde	r. (See Chart	I—Section.)

No. of Horizon.	Name of Horizon.	Thick- ness of Horizon in feet.	Position of Horizon from Top of Coal Seam where Fossils were obtained.	Lineal Extent or Area of Horizon.	Lithological Composition of Horizon.
29	Gellideg Seam or Lower Five Feet Seam or No. 3 Yard Seam	6	3 to 9 feet from top of coal seam	1,000 yards	Arenaceous shale.
28	Five Feet Seam or Seven Feet Seam	10	2 to 12 feet from top of coal seam	2,000 yards	Argillaceous shale.
27	Middle Yard Seam or No. 2 Yard Seam	7	5 to 12 feet from top of coal seam	400 yards	Argillaceous shale.
26	Upper Yard Seam or Bute Seam	6	6 to 12 feet from top of coal seam	760 yards	Arenaceous shale.
25	Lower Nine Feet Seam.	5	3 to 8 feet from top of coal seam	800 yards	Arenaceous shale.
24	Nine Feet Seam	10	4 to 14 feet from top of coal seam	2 acres	Argillaceous shale.
23	Six Feet Seam	6	6 to 12 feet from top of coal seam	15 acres	Argillaceous shale.
22	Four Feet Seam	6	3 to 9 feet from top of coal seam	1,200 yards	Carbonaceous shale.
21	Upper Four Feet Seam or Rider Seam	6	From top of coal seam .	10 yards	Carbonaceous shale.
20	Two Feet Nine Seam .	10	4 to 14 feet from top of coal seam	1,000 yards	Carbonaceous shale.
19	Three Coals Seam (B), or Upper Two Feet Nine Seam or No. 1 Yard Seam	9	From top of coal seam .	35 yards	Argillaceous shale.

96

No. of Horizon.	Name of Horizon.	Thick- ness of Horizon in feet.	Position of Horizon from Top of Coal Seam where Fossils were obtained.	Lineal Extent or Area of Horizon.	Lithological Composition of Horizon.
18	Lower Gorllwyn Seam .	6	From top of coal seam .	12 yards	Arenaceous shale.
17	Upper Gorllwyn Seam .	6	From top of coal seam .	300 yards	Arenaceous shale.
16	Lower Pentre Seam	6	From top of coal seam .	40 yards	Argillaceous shale.
15	Pentre Seam or Upper Pentre Seam	10	4 to 14 feet from top of coal seam	1,200 yards	Argillaceous shale.
14	Abergorky Seam	8	From top of coal seam .	1,000 yards	Argillaceous shale.
13	Hafod Seam	7	From top of coal seam .	300 yards	Arenaceous shale.
12	Hafod " Rider " Seam .	8	From top of coal seam .	6	Argillaceous shale.
11	No. 3 Rhondda Seam .	9	From top of coal seam .	yards 3,000	Argillaceous shale.
10	Three Coals Seam (A) .	4	From top of coal seam .	yards 30 yards	Argillaceous shale.
9	No. 2 Rhondda Seam .	8	From top of coal seam .	3,000	Argillaceous shale.
8	Fforest Fach Seam	7	From top of coal seam .	yards 80	Arenaceous shale.
7	No. 1 Rhondda Seam .	5	From top of coal seam .	yards 100	Argillaceous shale.
6	No. 1 Rhondda '' Rider '' Seam	5	From top of coal seam .	yards 50	Arenaceous shale.
5	Cefn Glas Seam	6	From top of coal seam .	yards 300	Carbonaceous shale.
4	Daran Ddu or Penygroes Seam	8	From top of coal seam .	yards 1,200	Arenaceous shale.
3	No. 3 Llantwit Seam	4	From top of coal seam .	yards 300	Argillaceous shale.
2	No. 2 Llantwit Seam	4 at Trefyrig, Tontre-	From top of coal seam .	yards 60 yards	Arenaceous shale.
		fail 4 at Craiglas, Gilfach Goch	From top of coal seam .	150 yards	Argillaceous shale.
		10 at Glyn- ogwr	From top of coal seam .	350 yards	Carbonaceous shale.
1	No. 1 Llantwit Seam	15	From 50 to 65 feet from top of coal seam	34 yards	Argillaceous shale.

TABLE giving number, &c. (continued).

- OF -

BIOLOGICAL

THE ROYA

PHILOSOPHICAL TRANSACTIONS

BIOLOGICAL

THE ROYAI

PHILOSOPHICAL TRANSACTIONS

E O E

SOCIET

UP D

SOCIET

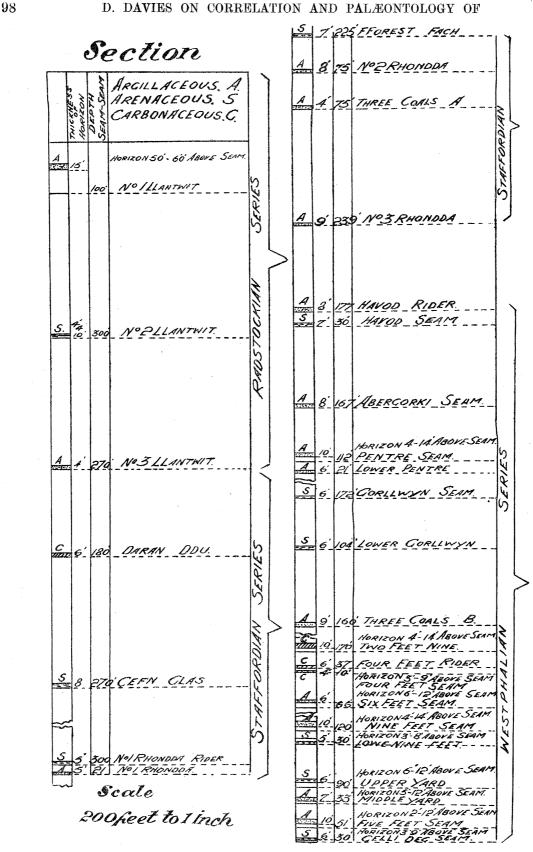


Chart I.-Section.

BIOLOGICAL

THE ROYAL SOCIETY

PHILOSOPHICAL TRANSACTIONS

THE COAL MEASURES IN EAST GLAMORGANSHIRE.

II. ECOLOGY: THE FLORAL ASSEMBLAGES. See Chart II (Ecology); Table C, Sheets 1-9 (Groups) and Table A, Sheets 1-6 (Horizons).

Westphalian or White Ash Series.—Records have been taken of 229,801 plants from the eighteen Westphalian coal seams examined. Eleven horizons shown that the class Equisetales dominates the other individual classes. The two classes Filicales and Pteridosperms and the Lycopodiales dominate on three horizons, while the class Cordaitales is superior in number on the lowest horizon but one, namely, horizon 28.

Staffordian or Lower Pennant Series.—A total of 111,666 records of plants was made from eight horizons. It is found that the class Filicales and Pteridosperms preponderates over the individual classes on four horizons. The class Equisetales dominates on two horizons only, and the class Lycopodiales and Cordaitales are each superior in number in one horizon, thus clearly establishing the ascendancy of the Filicales and Pteridosperms in the middle group of the Coal Measures.

Radstockian or Upper Pennant or Llantwit Series.—From the three horizons of this Series there was a total yield of 48,516 plants, and each individual horizon showed that towards the close of the Carboniferous times, the Filicales and Pteridosperms held the field over the other classes of plants. It will be seen by comparing the three groups together, that the lowest or Westphalian shows the Equisetales dominant, whereas the middle or Staffordian group and the upper group or Radstockian show the dominance of the Filicales and Pteridosperms.

Taking the whole Coal Measures from the bottom to the top with an assemblage of 389,983 plants, the class Equisetales dominates on 13 horizons, the Filicales and Pteridosperms on 10 horizons, the Lycopodiales on 4 horizons, while the class Cordaitales, being the least, is dominant on 2 horizons only.

Having shown the position of the different classes of plants, stating their relative dominance to one another, it will be well here to show the position of the dominant genus within each class on the various horizons, from an ecological standpoint. The number of examples and the percentage of each genus recorded are given in tables, so that detailed discussion is unnecessary. A few of the main conclusions are referred to in the following notes.

Westphalian Series.

Equisetales.—The genus Asterophyllites dominated on 12 of the 18 horizons examined ; the Calamites dominated on 4 horizons and Myrophyllites on 2 horizons.

Sphenophyllales.—The genus Sphenophyllum—the only one belonging to this class appeared on 12 horizons. This genus was not present at all on 6 of the 18 horizons of the Westphalian Series.

Lycopodiales.—It was found that the genus Lepidodendron dominated on 13, Sigillaria on 3 and Stigmaria on 2 of the 18 horizons of the series.

Filicales and Pteridosperms.—The genus Neuropteris dominated on 15 horizons. The three genera, Mariopteris, Sphenopteris and Alethopteris dominated on 1 horizon each, which equal 18 horizons.

VOL. CCXVII-B.

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

Cordaitales.—The Cordaite leaves were the sole representative of this class. The class Cordaitales was present on all the 18 horizons examined in the Westphalian Series.

Staffordian Series.

Equisetales.—The eight horizons of the Staffordian Series showed the genus Asterophyllites dominant.

Sphenophyllales.—Sphenophyllum was found present in 7 horizons; 1 horizon failed to show its appearance.

Lycopodiales.—The genus Lepidodendron dominated on 4 of the 8 horizons, Sigillaria on 3 and Lepidophyllum on 1 only.

Filicales and Pteridosperms.—The genus Neuropteris dominated on the 8 horizons of the series.

Cordaitales .--- Cordaite leaves dominated on the 8 horizons.

Radstockian Series.

Equisetales.—The genus Asterophyllites dominated on the 3 horizons.

Sphenophyllales.—The genus Sphenophyllum was found in the 3 horizons.

Lycopodiales.—The 3 genera, Lepidodendron, Sigillaria and Lepidophyllum dominated on one horizon each.

Filicales and Pteridosperms.—The genus Neuropteris dominated on the 3 horizons.

Cordaitales.—Cordaite leaves dominated on the 3 horizons.

Taking the three groups, the Westphalian, Staffordian and Radstockian Series together, the different genera within their respective classes show the following behaviour in their dominance one over the other.

Equisetales.—The genus Asterophyllites dominates on 23 horizons, Calamites on 4 horizons, Myrophyllites on 2 horizons—total, 29 horizons.

Sphenophyllales.—The genus Sphenophyllum appears on only 22 of the 29 horizons examined.

Lycopodiales.—The different genera within this class showing a dominance over the other genera are Lepidodendron, occurring on 18 horizons, Sigillaria on 7 horizons, Lepidophyllum and Stigmaria on 2 horizons each.

Filicales and Pteridosperms.—The genus Neuropteris appears dominant in no less than 26 horizons, while Alethopteris, Sphenopteris and Mariopteris show their dominance on 1 horizon each.

Cordaitales.—Cordaite leaves appear on 29 horizons, and are nearly the sole representative of this class.

Summarising the above it becomes quite clear that the Asterophyllites, or branch foliage of the Calamites, were present in far greater number than the parent stems, or Calamites.

The genus Sphenophyllum was absent from no fewer than 7 horizons. In the class Lycopodiales the genus Lepidodendron shows a clear preponderance in number. The genus Neuropteris persisted from the base to the uppermost horizons and failed to dominate only on 3 horizons.

BIOLOGICAL SCIENCES TRANSACTIONS THE ROYAL SOCIETY - OF -

BIOLOGICAL TRANSACTIONS THE ROYAL SOCIETY - OF -

TABLE A.—The Distribution of a Single Genus of Plants as related to the Genera of Plants of each Horizon.

Equisetales.
I to XXIX.
Vo. 1.—Horizons]
Sheet N

THE COAL MEASURES IN EAST GLAMORGANSHIRE.													10																
Total Plants of different Classes.	15,006	14.951	18,559	17.045	6.648	13,626	- 18,959	20,951	3,975	24,672	5,792	18.949	14.721	4,074	5,545	30,228	22,069	24,812	27,874	1,402	1,103	11,806	7,004	5,745	20,973	4,639	5,946	1,831	22,056
Plants llass.	Per cent. 24.05	36.42	21.93	21.98	26.55	88.62	36.24	27.83	41.60	40.42	39.00	44.42	83.73	84.30	26.04	4 7 · 18	94.03	1.47	60.12	5.99	62.02	68.71	40.70	20.90	68.66	31.30	72.19	30.69	39.61
Total Plants in a Class.	Plants. 3,617			3.748			÷		1,652	9,974	2,258	8.417				14,263	20,750	363	16,759	84	684	8,126	2,854	2,925	14,402	1,452	4,292	566	8,736
8- 17a.	Per cent.]						1	- (ip	61.0	j,	₹.0			-	1			1		1		1	I		1	0.08			
Palæ- stachya.	Plants.	l	I	1	I	- L	1	्य	2	1	24	1	.	l	1	1		l	1		I	1	1	1	1	4	1	1	l
bilte	Per cent. I		!		l	1	0.005	€00÷0		 l		1	l	1		1	1		1	I	. 1		1	1	l	1			
Calamite Bulbil.	Plants.	ł	l		l	1	े <mark>ल</mark>		1	1	l	1 1	1		1	I	ĺ			1	1	1	1	1	1	I	l	1	1
nite es.	Per cent.	0.33	0 • 14		I	62·1	60.0	0-55	0.02	60.0	11.0	2.08	0.02	₹0.0	01.0	₹0.0	1	1	10.0	1	1	0.02	I	Ì	1	0.86	0.05	0.50	0.004
Calamite Cones.	Plants. 8	50	26		ł	231	18	117	1	24	9	396	60	61	9	13	١	1	ŝ	1	I	ŝ	I	1	1	40	ŝ	80	1
aria.	Per cent. 2.66	2.58	0.51	0.30	1	0.03	0.04	0.03	1.08	₹0.0	1.20	1	1	1	10.0	0.03	١	1	1	1	١	1	1	1	1	1	1	1	1
Pinularia.	Plants. 406	387	96	52	1	4	00	00	47	11	73	1	1	1	1	6	I	- 1	1	1	1	1	1	I	1	1	1	I	1
ro- ites.	Per cent. 7.05	<i>1.64</i>	₹1.9	20.2	10.0	2.60	3.18	19.9	8.40	7.81	10.60	1.52	1.64	28.60	2.50	9.83	32.96	0.008	24-41	1	2.18	60.9	0.55	3.30	37 - 17	3.20	4.60	2.20	20.95
Myro- phyllites.	Plants. 1,058	246	955	1,206	, , ,	1,036	603	1,399	336	1,929	583	298	243		138	2,973	7,272	61	6,013	I	240	720	43	190	7,793	154	274	40	4,627
mite gma.	Per cent. 0.03	1	1	1	1	0.47	60.0	0.03	0.20	0.02	0.20		I	1	1	600.0	1	I	ł	I	1	I	0.03	20.0	ł	1	0.20	I	1
Calamite Phragma.	Plants. 5	1	1		l	64	17	~	80	9	11	1	1	I	١	\$		1	I	1	۱	١	61	4	I	I	11	I	I
Calamite Leaves.	Per cent.	-	١	1	1	l	l	1	I	l	I	1	I	I	I	I	I	1	1	١	I	1	١	1	I	I	ļ	1	I
Calai Lea	Plants. —	1	!		١	1	Ì		18	1	11		1	1	١	I	1	1	I	1	1	ł	I	1	1	1	I	1]
Annularia.	Per cent. 0.08	3.36	1.27	2.20	0.03	4.72	I÷₹I	1.40	4∙60	0.15	3.10	1	1	20.0	12.0	3.42	0.05	١	١	1	1	1	I	10.0	I	₹0.0	1	0.30	1
Ann	Plants. 13	503	236	375	61	1,597	269	294	186	37	184	1	1	\$	37	1,034	11	۱	1	1	١	l	۱	н	١	61	1	9	1
Calamo- cladus.	Per cent.	1	1		1		1	1	2.30	1	2.50		0.03	0.02	01.1	1	1	١	1	I	I	1	1	I	I	1	0.50	0.20	1
୍ର ଟ୍ର 	Plants.	1				1	1	1	92	I	146	i	70	T	16	1	1	I	١			1	I	1	I	1	27	13	1
hyllites.	Per cent. 11·11	$24 \cdot 00$	13.63	9-48	23-45	37.82	96·6I	12.33	15·40	₹9·11	13.40	26.38	60.30	48 • 4 0	01.01	16-34	57.59	1.07	37.87	₹.0	36-53	4∙81	37 - 10	26.60	28.86	8.40	36.30	8.80	14.09
Asterophyllites.	Plants. 1,668	3,599	2,531	1,617	1,558	5,154	3,763	2,585	612	4,353	787	5,000	8,898	2,172	765	4,941	12,710	266	10,557	9	403	5,679	2,600	2,111	6,055	389	2,161	191	3,108
	Per cent. 3.06	4.42	2.30	2.92	3.05	29.35	11.55	22.9	8.70	15.03	2.2	14.34	21.58	2.10	7.30		3.43	0.38		5.50	3.71	1.0.1	16.2	10.80	2.64	18-50	30.50	06.91	4.53
Calamites.	Plants. 459	661	427	498	203	4,000	2,191	1,419			433	2,718	3,176 2	87	406		757	95	186	18	41	1,724							1,000
Horizon No.	<u>中</u> 一	П	H	IV	Δ			IIIA		X	X	ШΧ		VIX	XX		IIVX	IIIVX	XIX	XX			ШХХ	AIXX	ΔXX				XIXX

D. DAVIES ON CORRELATION AND PALEONTOLOGY OF

Table A (continued).

Sheet No. 2. Sphenophyllales.

Horizon No.	Spheno	phyllum.	Total in a	Total Plants of different Classes.				
I	Plants. 26	Per cent. $\theta \cdot 18$	Plants. 26	Per cent. 0.18	15,006			
III	743 158	$4 \cdot 98 \\ 0 \cdot 85$	$\begin{array}{c} 743 \\ 158 \end{array}$	$4 \cdot 98 \\ 0 \cdot 85$	$14,951 \\ 18,559$			
IV V	35	0.20	35	0.20	17,045			
VI	1	0.01	1	0.01	13,626			
VII	356	1.87	$35\overline{6}$	1.87	18,959			
viii	701	3.35	701	3.35	20,951			
IX	264	$6 \cdot 64$	264	$6 \cdot 64$	3,975			
X	141	0.57	141	0.57	24,672			
XĪ	61	$1 \cdot 05$	61	1.05	5,792			
XII	46	0.24	46	0.24	18,949			
XIII	4	0.03	4	0.03	14,721			
XIV	. 17	$0 \cdot 40$	17	$0 \cdot 40$	4,074			
XV	361	$6 \cdot 49$	361	$6 \cdot 49$	5,545			
XVI	2,816	9.33	2,816	$9 \cdot 33$	30,228			
XVII	7	0.03	7	0.03	22,069			
XVIII					24,812			
XIX	3	0.02	3	0.02	27,874			
XX				- 10	1,402			
XXI	2	0.18	2	0.18	1,103			
XXII	208	1.76	208	1.76	11,806			
XXIII					7,004			
XXIV		0 10	20	0.12	5,745			
XXV	20	0.12	20	0.12	20,973 4,639			
XXVI	11	0.19	11	0.19	5,946			
XXVII XXVIII	11	0.19	11	0.19	1,831			
	-	0.02		0.02				
XXIX	4	0.02	4	0.02	22,056			

 PHILOSOPHICAL TRANSACTIONS
 THE ROYAL
 BIOLOGICAL

 OF
 OF
 SOCIETY
 SCIENCES

ES

PHILOSOPHICAL THE ROYAL BIOLOGICAL SCIENCES

tinued).
A (con
Table

Lycopodiales.	
Sheet No.	

		Т	ΉE	CO.	AL	М	EA	SU	RI	ES	IN	EAS	ST	f GLAMORGANSHIRE.													103		
Total Plants.	15,006	14,951	18,559	17,045	6,643	13,626	18,959	20,951	3,975	24,672	5,792	18,949	14,721	4,074	5,545	30, 228	22,069	24,812	27,874	1,402	1,103	11,806	7,004	5,745	20,973	4,639	5,946	1,831	22,056
ants iss.	Per cent. 12.88	I.63	5.63	2.65	36 - 85	0 - 14	4·06	0.85	1.27	00.1	0.25	02.11	4.63	0.21	38.71	5.14	61.0	48.51	22.32	69-99	19.61	9.19	0.45	3.40	17.44	09·0I	0.50	0.21	1.70
Total Plants in a Class.	Plants. 1,933	240	1,046	452	2,458	19	117	179	49	276	14	2,215	682	6	2,151	1,554	43	12,038	6,222	935	217	1,085	32	196	3,658	491	29	4	376
	Per cent.	1					1		1	0.02	1				1	0.03	1		1	1	- 	1	l	ļ	1	I	I	1	1
Lepido- cystis.	Plants.	1			1	1	I	1	I	.c	1	·	1		1	10	I	l	I			1	I	I	I		l	I	
Sigillario- strobus.	Per cent.	0.02	I		1	1	1	I	I	I	1		I	I	1	I	1	I	I	I	1.	1	I	I	١	I	1	1	
Sigill	Plants.	3 (?)	l		I	I	l	I	I	1	I		1	١	I	1	I	1	1		1	1	1			I	١	1	1
Lepido- strobus.	Per cent. 1·35	21.0	0.39	21.0	20.0	ł	0.05	0.03	1	60.0	I	0.22	61.0	1	4.20	10.0	0.004	6.20	4.53	<i>0</i> · <i>1</i> ∉	$66 \cdot I$	1.35	20.0	0-47	2.14	0.80	I	1	0.03
LeI	Plants. 204	25	73	30	10	1	10	00	1	22	l	43	22	1	233	4	Ч	1,550	1,265	61	22	160	5	27	457	34	I	l	2
Stigmaria.	Per cent.	0.005	0.003	0 . 12	10.0	10.0	<i>₽I</i> • 0	10.0	1	0.02	210.0	90.0	1.46	I	3.12	0.52	0.009	4 • 4 5	0.23	9.12	0.54	1.67	I	0.24	1	01.0	I	I	0.63
Stign	Plants.	1	ŝ	21	ы	61	26	က	1	9	-	12	216	1	173	159	67	1,116	63	128	9	197	I	14	I	4	I	1	139
Lepido- phyllum.	Per cent. 1·19	$I \cdot I3$	10.I	1.10	0.03	₹0.0	60.0	0.04		60.0	I	2.00	90.0	I	8.25	0.42	0.05	I	3.08	1.14	4.89	0.03	1	I	0.20	1	I	1	90.0
Lep phyl	Plants. 189	169	200	199	61	9	18	6	1	22	I	379	6	1	458	128	13	l	859	16	54	4	1	I	43	İ	I	1	15
Lepido- phloios.	Per cent. 0.005	10.0	90.0	0.02	0.04	I	20.0	I	I	I	1	0.28	I	I	10.0	1	I	0.004	200.0	1	0.27	0.45	1	ŀ	0.009	1	I	I	0.03
Lep	Plants.	67	11	5	en	I	14	1	I	1	1	54	1	I	П	I	ľ	н	61	١	ŝ	54	ŀ		61	I	١	1	2
Asolanus.	Per cent.	I	0.05		I	l			1	11.0	I		ľ	I	l	90·I	1	I	1.	Í	l		1	1	I	1	l	1	1
Asol	Plants.		6		I	I	1	1	I	29	I			I	1	322	1	1.	l	1	I	١	1	1	1	1	I	١	1
Pinako- dendron (?)	Per cent.	10.0		10.0	1	I	I	I	l		1		I	I	I	1				I		1	1	I	1	1	1	I	1
Pin dend	Plants.	61	1	~	1	- 1	1	I	I	1	1		1	1	1		ļ			1			İ	Í	1	i	I	I	1
Uloden- dron.	Per cent. 0.005	1	1		1	1			I	1	1	Í	1	1	ļ	1	١	1	I	1	I	1		I	1	1		1	1
9 ¹⁰	Plants.	I	I		I	1	1	I	1	I	1		I	1	1	I	l	I	1	1	1	1	1	l	I	1		1	1
Bothro- dendron.	$\begin{array}{c} \operatorname{Per} \\ \operatorname{cent.} \\ 0 \cdot 01 \end{array}$		0.14	0.02	0.03	1	0.03	1	1	1	I		1	I	0.32	I				1	I			1		1		1	1
Bot dend	Plants.	1	27	ro.	61	1	9	1	I	I	I			ļ	18	1	1	1		1	1	1	1		1	1	ł	I	1
Sigillaria.	Per cent. 1·19	20.0	2.72	0.39	3.94	0.02	3.29	0.63	0.50	₹0.0	0 - 15	5.94	01.0	I	2.47	1.56	0.08	6.02	0.80	10.12	21.0	0.33	0.14	0.24	11.0	0.4	0-49	0.05	0.03
Sigil	Plants. 179	Ħ	506	88	262	4	613	132	20	п	6	1,126	15	I	127	472	19	1,495	225	142	6	39	10	14	24	19	28	н	80
endron.	Per cent. 9.04	0.18	1.15	17.0	32.86	0.05	0-44	0.12	0.72	0.73	20-0	3.17	2.85	0.21	20.57	1.51	0.03	31.78	13.66	46·14	11.15	5.60	0.24	2.4	14.93	9.3	10.0	91.0	90
Lepidod	Plants. 1,357	27	215	121	2,183	7	84	27	29	181	4	601	420	6	1,141	459	30	7,876	3,808	647	123	661	17	141	3,132	434	г	e	200
Horizon No.	I	п	Ш	IV	Δ	ΙΛ	ПΛ	ΠIΛ	IX	x	IX	ЛХ	ШХ	XIX	XV	IVX	ПЛХ	шлх	XIX	XX	IXX	пхх	IIIXX	XXIV	XXV	IVXX	плхх	шлхх	XIX

BIOLOGICAL TRANSACTIONS CONTRANSACTIONS SOCIETY

- OF -

Table A (continued).

Sheet No. 4. Filicales and Pteridosperms.

	D.	D	AVII	ES	ON	C	OR	RE	LA	TI	ON	AN	D	PA	LA	EO	NT	\mathbf{OL}	06	Y	01	?							
Total Plants of different Classes.	15,006	14,951	18,559	17,045	6,643	13,626	18,959	20,951	3,975	24,672	5,792	18,949	14,721	4,074	5,545	30,228	22,069	24,812	27,874	1,402	1,103	11,806	7,004	5,745	20,973	4,639	5,946	1,831	22,056
	Per cent. 62.08	19.9	66.14	64-09	26.11	10.11	21.15	51.35	35.90	<i>0₹∙19</i>	40.50	40.68	8.83	5.20	01.6	37.05	5.63	5.60	16.04	1.50	16.40	17-31	44.30	28.30	11.36	40-80	26.50	24.60	54.45
Total Plants in Class.	Plants.	8,402	12,296	10,919		1,499	4,009	10,757		12,693 4	2,251	7,708	1,300	214	221	11,202 3	1,244	1,388	4,471	24	181	1,937	3,107	1,622	2,384	1,884	1,536	453	12,009
	Per cent. 0.02	0.39	90.0	₹0.0	10.0	1	₹0.0	₹0.0	1	0.02	I	10.0	01.0	I	1	0.15	0.05	20.0	I	1 -	0.46	l	1	I	11.0	0.08	10.0	0.40	0.02
Seeds (?)	Plants.	58	12	2	П	I	6	6	I	9	I	~	15	1	1	46	12	18	1	1	10	1.	l	l	53	4	÷-i	80	п
130- 130-	Per cent. I 0.77	0.08	91.0	0.52	1	1	0.005		1	₹00.0	1	0.005	1	1	1		1	1	I	1	60.0	0.005		1	₹00.0	. [1		600.0
Trigono- carpus.	Plants. 116	12	30	90	I	1	٦	1	1	F	1	-	I	1	1	I	1	l	1		-		I	1		1	I		F 3
-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i	Per cent. 1 1.03	0-81	0.49	0.42	1	0.25	21.0	1.39	0.75	I	0.20	0.13	0.006	0.03	10.0	0.20	I	I	0.003	1	0.27	0.02	0.80	₹0.0	₹00.0	90.0	1	07-40	0.34
Cycl- opteris.	Plants. 156	22	92	72	1	35	34	293	28	I	п	25		1 -1		61	1.		-	1	ŝ	හ	22	ю	н	13	1	80	11
or or ke	Per cent. F 14·01	11.11	12.58	17.33	11-68	<i>91-1</i>	4.77	61.01	4.03	15.85	13.60	19.78	7-35	2.56	2.40	16 · 14	2.79	2.47	3.48	0.13	1.32	10-24	070	61.0	5.27	18.80	16.30	3.70	15-84
Rachis of Fern or Fernlike Plants.	Plants.	1,762]	2,336 1	2,965]	176 1	169	906	2,136	191	3,911	r 064	3,749	1,093	105	413	4,989	616	1,367	1,070	61	147	1,209	28	11	1,106	872	010	69	3,594
is.	Per cent.		0.60	0.86	1	I	10.0	1	1	0.004	I		1	1	1	1	1		1	1	1	1	ŀ	١	1	ĺ	1	I	1
Odont- opteris.	Plants.	1	112	147	I	1	67		1		I	1	1	I	I	1		1	ľ	I	l	1	I	1	1	1	1	1	1
4.si	Per cent.	0.21	60.0	1	1	1	1]	1	I	I			1	1	10.0	I	1	1	1	1	1	1	1	1	1	1	1	
Coron- opteris.	Plants.	32	18		I	1	l	I	I	1	l ·	1	I		I	5	1	1	1	1		1	1	Ì	I	1	İ	1	Ι
ris.	Per cent. 0.02	01.0	10.0	1	1	1	1	1	I	0.03	02.0		l	0₹•0	l	I	l	1	1	l	l	۱	1	l	0.009	ł	١	I	l
Erem- opteris.	Plants. 2	15	63		I		1	I	ł	6	41	1	1	61	1	1	I	I	1		I			1	63		I	I	1
38°	Per cent.	1	1		1	1	Ï	1	0.80	0.008	0.05	. 1	1	1	1	1	1	I	1		I	.	I	1	.	1.	I	1	I
Cross- otheca.	Plants.	1	I	1	1	1	1	I	31	61	ന		I	I	-1	l	1	I			I	ļ	1	1		1	l	I	1
Is.	Per cent. 0.16	2.72	0.50	0.26	I	0.02	0.005	600.0	0.28	19.0	00·I	1.64	0.05	0.63	I	0.006	0.02	l	70.0	0.20	0.18	90.0	0.55	I	0.24	0.69	I	1.60	1
Mart- opteris.	Plants.	407	94	46	I	4	r=i	63	10	126	58	311	80	26	I	67	ŝ	ł	12	679	61	2	43	I	52	28	1	31	1
rii.	Per cent. 0.60		8.12	0.95	1	1	10.0	0.20	0.56	11.1	0-48	1	1	1	0.20	1	0.004	10.0	1	1	1	0.02	10.0	0.14	I	I	1	1	1
Pec- opteris.	Plants. 100	1,173	1,508	163	1	1	63	42	20	275	28		1	1	11	1	-1	4	I	1.	1	ŝ		9	Ì	I	1	1	1
h- tis:	Per cent. 1.59		11.1	91.0	. 1	l	0.37	I	I	₹1.0	1	0.29	1	80.08	1.50	I	I	1	0.08	1	0.09	0.20	0 • 14	0.36	0.05	l	0.05	10.00	1.12
Aleth- opteris.	Plants. 239	21	207	29	I	ł	20	1	1	36	1	56	1	4	86	1	ĺ	I	22	I		24	10	21	п	1	63	183	249
4.3	Per cent.]		4.62	0.44	1	20.0	61.0	0.30	3.18	2.03	11.20	0.37	0.02	0.22	0.30	2.15	₹0.0	0.004	10-0	1	1	10.0	90.00	714	0.21	22.0	5.90	2.20	1.12
Sphen- opteris.	Plants.		858	26	1	Г	37	63	127	201	654	2	4	10	11	652	H		~	١	I	61	4	° Q	52	36	331	40	49
	Per cent.]	27.55	37-85	42.30	0.24	9.46	15-55	39.20	26-30	31.17	13.08	18-42	1.21	1.37	0-41	18-01	2.71	0.06	12.35	1.30	2.00	5.82	42.30	27.40	5-41	20.20	3.90	6.20	36-34
Neur- opteris.	Plants. 6.530	4,124	7,026	7.324		1,290	2,949		1,050	064,7		3.492	179	66	23	5,447		16	3,345	19	22	688	2,964	1,573	1,136	941	232	114	8,027
Horizon No.			H			IV	ПΛ	ΠΊΛ	IX	X	XI	X	ШХ	XIX	XV	IVX	хүп	IIIVX	XIX	XX	IXX	пххп	IIIXX	VIXX	XXV	IVXX	ΠΛΧΧ	IIIVX	XIXX

104

BIOLOGICAL SCIENCES

TRANSACTIONS THE ROYAL

SOCIETY

- OF -

BIOLO	
THE ROYAL	SOCIE I Y
HILOSOPHICAL	OF

DGICAL ICES Table A (continued).

BIOLOGICAL

TRANSACTIONS THE ROYAL

SOCIETY

-OF

 $\begin{array}{c} 18,949\\ 44,074\\ 5,545\\ 5,545\\ 30,228\\ 30,228\\ 30,228\\ 30,228\\ 1,402\\ 1,402\\ 1,402\\ 1,103\\ 11,806\\ 7,004\\ 7,004\\ 7,004\\ 5,745\\ 5,745\\ 5,946\\ 1,831\\ 22,956\\ 5,946\\ 1,831\\ 22,056\end{array}$ $\begin{array}{c} 117,045\\ 6,643\\ 6,643\\ 13,626\\ 18,959\\ 20,951\\ 3,975\\ 3,975\\ 5,792\\ 5,792\end{array}$ Total Plants. 15,00614,95118,559 $\begin{array}{c} 2.96\\ 2.78\\ 9.81\\ 1.8.70\\ 2.87\\ 2.8$ Per cent. 0.76 0.81 5.34 $\begin{array}{c} 11.08\\ 24.60\\ 0.15\\ 0.15\\ 36.68\\ 36.68\\ 114.68\\ 6.61\\ 6.61\\ 19.3\end{array}$ Total Plants in a Class. Plants. 114 120 788 $\begin{array}{c} 1,891\\ 1,628\\ 21\\ 21\\ 6,953\\ 3,484\\ 583\\ 583\\ 1,588\\ 1,588\end{array}$ Per cent. 0.06 __ 0.29 $\begin{array}{c|c} 0.32\\ 0.14\\ 0.13\\ 0.28\\ 0.28\\ 0.28\\ 0.28\\ \end{array}$ Seeds. Plants. Ribbed type. 5+4 Platis-permic. 17 0.005 Per cent. Polyptero-spermum. Plants. Sheet No. 5. Cordaitales. Per cent. $\begin{array}{c} - \\ - \\ 0 \cdot 02 \\ - \\ - \\ - \end{array}$ $0.02 \\ 0.04$ -0.15 0.51 0.73 0.03 0.17 0.04 $0.01 \\ 0.02 \\$ Samaropsis. Plants. en 01 $\begin{array}{c|c} & 108 \\ & 29 \\ & 29 \\ & 29 \\ & 108 \\$
 1
 1
 2
 2
 1
 1
 2

 1
 1
 3
 1
 1
 1
 2
 1
 1
 Per cent. 0.006 0.005 0.15 ____ 0.08 0.08 0.08 $\begin{array}{c} 0\cdot 13 \\ 0 \cdot 01 \\ \hline 0 \cdot 01 \\ \hline \end{array}$ $\begin{array}{c} 9.06 \\ 0.03 \\ 0.03 \end{array}$ $\begin{array}{c} 0.01 \\ 0.02 \\ 0.04 \\ 0.01 \\ 0.01 \end{array}$ Artisia (pith cast). Plants. $\begin{smallmatrix}1&&&\\&1&&\\&&&1\end{smallmatrix}$ Per cent. 0.006 0.02 7.49 0.005 Cordaianthus. 0.04 Plants. 1 — 13 13 13 Per cent. 0.75 0.71 4.19 $\begin{array}{c} 11.08\\ 24.35\\ 0.15\\ 0.15\\ 36.44\\ 16.11\\ 16.11\\ 13.92\\ 6.35\\ 6.35\\ 18.8\end{array}$ $\begin{array}{c} 2 \cdot 96 \\ 2 \cdot 62 \\ 2 \cdot 62 \\ 2 \cdot 62 \\ 2 \cdot 5$ Cordaite Leaves. Plants. 113 107 778 $\begin{array}{c} 1,890\\ 1,618\\ 21\\ 21\\ 6,910\\ 3,366\\ 553\\ 1,577\\ 1,085\end{array}$ Horizon No. $\begin{array}{c} \mathbf{v}_{\mathbf{v}} \\ \mathbf{v}_{\mathbf{v$ III

THE COAL MEASURES IN EAST GLAMORGANSHIRE.

105

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

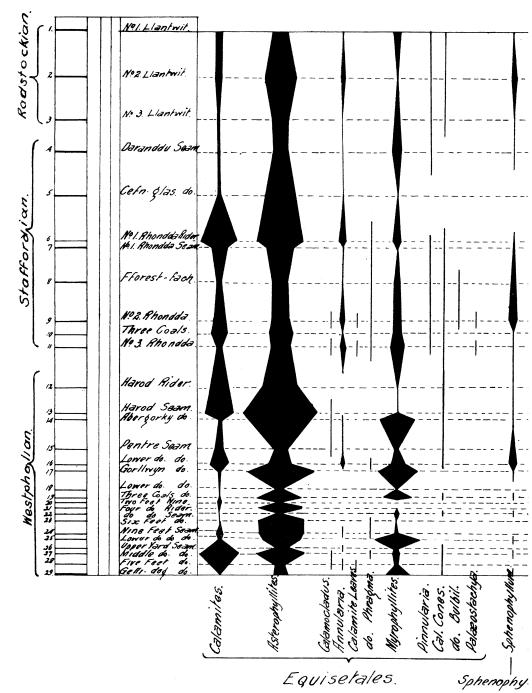
Table A (continued).

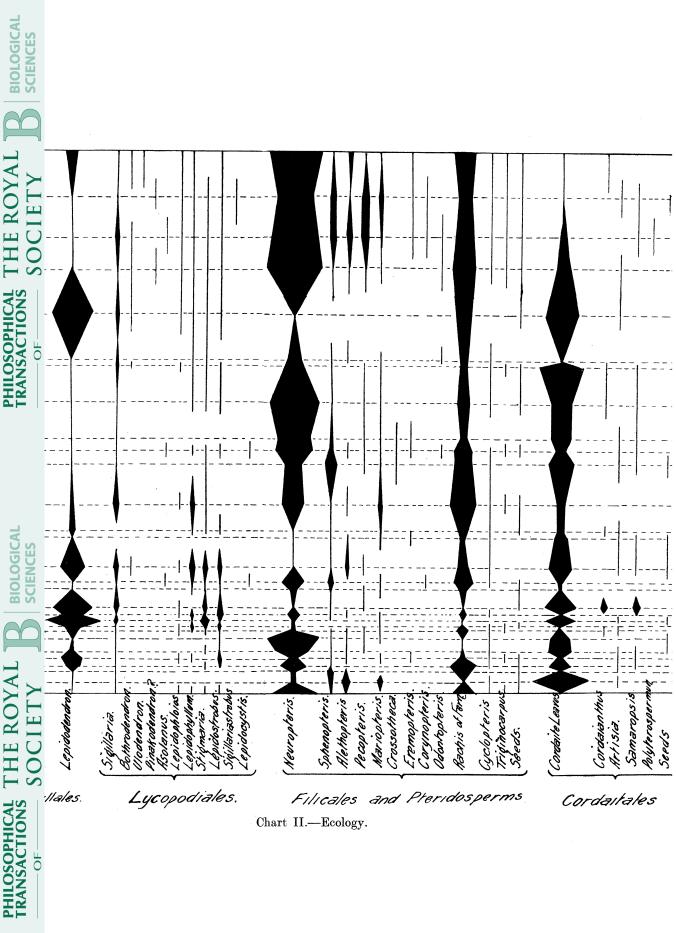
Sheet No. 6. Showing the Distribution of a Single Class of Plants as related to the Different Classes of Plants on each of the 29 Horizons.

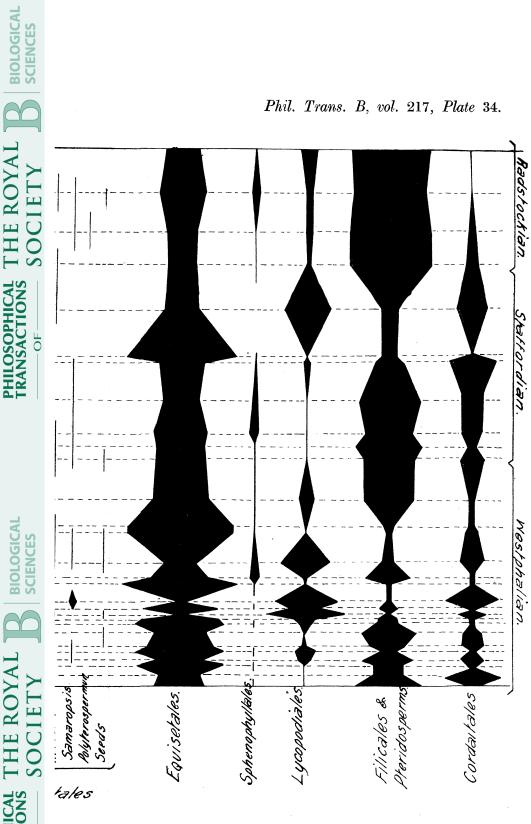
Horizon No.	Equisetales.		Sphenophyl- lales.		Lycopodiales.		Filicales and Pteridosperms.		Cordaitales.		Total Plants of Different Classes.
		$\mathbf{Per} \mid$		\mathbf{Per}		Per		Per		Per	
	Plants.	cent.	Plants.	cent.	Plants.	cent.	Plants.	cent.	Plants.	cent.	
Ι	3,617	$24 \cdot 05$	26	$0 \cdot 18$	1,933	$12 \cdot 89$	9,316	$62 \cdot 09$	114	0.79	15,006
II	5,446	$36 \cdot 42$	743	$4 \cdot 98$	240	$1 \cdot 60$	8,402	$56 \cdot 19$	120	$0 \cdot 81$	14,951
III	4,271	$21 \cdot 93$	158	0.85	1,046	$5 \cdot 63$	12,296	$66 \cdot 25$	788	$5 \cdot 34$	18,559
IV	3,748	21·98	35	0.20	452	$2 \cdot 65$	10,919	$64 \cdot 09$	1,891	11.08	17,045
v	1,764	$26 \cdot 50$			2,458	37.00	793	$11 \cdot 90$	1,628	$24 \cdot 6$	6,643
\mathbf{VI}	12,086	88.69	1	$0 \cdot 01$	19	$0 \cdot 14$	$1,\!499$	$11 \cdot 01$	21	$0 \cdot 15$	13,626
\mathbf{VII}	° 6,870	$36 \cdot 24$	356	1.87	771	$4 \cdot 06$	4,009	$21 \cdot 15$	6,953	$36 \cdot 68$	18,959
VIII	5,830	27.83	701	$3 \cdot 35$	179	0.85	10,757	$51 \cdot 35$	3,484	$16 \cdot 62$	20,951
IX	1,652	41.56	264	6.64	49	1.23	1,427	$35 \cdot 89$	583	$14 \cdot 68$	3,975
X	9,974	40.42	141	0.57	276	1.14	12,693	$51 \cdot 47$	1,588	$6 \cdot 47$	24,672
XI	2,258	39.00	61	$1 \cdot 05$	14	0.24	2,342	$40 \cdot 43$	1,117	$19 \cdot 28$	5,792
XII	8,417	$44 \cdot 42$	46	0.24	2,215	11.70	7,708	40.68	563	$2 \cdot 96$	18,949
\mathbf{XIII}	12,325	83.73		0.03	682	4.63	1,300	8.83	410	2.78	14,721
XIV	3,434	84.29		0.41	9	0.22		5.23	400	9.83	4,074
XV	144	26.04		6.51	2,151	38.79		9.93	1,038	18.73	$5,\!545$
XVI	14,263	47.18	2,816	9.33	1,554	5.14	11,202	37.05	393	1.30	30,228
XVII	20,750	94.03	7	0.03	43	0.19	1,244	5.63	25	$0 \cdot 12$	22,069
XVIII	363	1.47			12,038	48.51		5.60	11,023	$44 \cdot 42$	24,812
XIX	16,759	60.12	3	0.02	6,222	22.32	4,471	16.04	419	1.50	27,874
$\mathbf{X}\mathbf{X}$	84	5.99			935	66.69	24	1.71	359	25.61	1,402
XXI	684	62.02		0.18	217	19.67	181	16.40	19	1.73	1,103
XXII	8,126	68.71	208	1.76	1,085	9.19		17.31	450	3.03	11,806
XXIII	2,854	40.75	i		32	0.45		44.36	1,011	14.44	7,004
$\mathbf{X}\mathbf{X}\mathbf{I}\mathbf{V}$	2,926	50.93	×		196	3.41		28.19	1,002	12.47	5,745
XXV	14,402	68.66	3 20	0.12	3,658	17.44	2,384	11.36		$2 \cdot 42$	20,973
XXVI	1,452	31.30			491	10.59	1,884	40.61		17.50	4,639
XXVII	4,292	72.19) 11	0.19	29	0.48		25.83		1.30	5,946
XXVIII	562	30.69		-	4	0.22		24.74		$44 \cdot 35$	1,831
XXIX	8,736	39.61	4	0.02	376	1.70	12,009	$54 \cdot 45$	931	$4 \cdot 22$	22,056
					Ì						

BIOLOGICAL TRANSACTIONS THE ROYAL Ð SOCI

-0F


TRANSACTIONS CONTRANSACTIONS


SOCIE


0F

TRANSACTIONS THE ROYAL -0F-

III. FLORA—TABULATION OF SPECIES. (See Chart III.)

The following is a complete list of the species and the various horizons at which each species was found.

(W = Westphalian; S = Staffordian; R = Radstockian.)

CLASS EQUISETALES.

Genus Equisetites.

E. rugosus (GEINITZ), hor. 16 (W), hor. 11 (S).

Genus Calamites.

- C. Suckowi (BRONGT), hor. 29–26–25–23–19–17–13 (W), hor. 11–9–8–4 (S), hor. 3–2–1 (R).
- C. ramosus (var. rugosus), (KIDSTON and JONGMANS), hor. 28-15 (W), hor. 9 (S).
- C. cisti (BRONGT), hor. 26-14 (W), hor. 9 (S), hor 3-1 (R).
- C. (cf.) cisti (BRONGT), hor. 3-1 (R).
- C. palæceus (STUR.), hor. 15 (W).
- C. carinatus (STERNBG.), hor. 29-28-27-25-24-12 (W), hor. 10-9-8-7-6 (S), hor. 3-2 (R).
- C. undulatus (STERNBG.), hor. 29–28–27–24–23–22–19–18–15–13 (W), hor. 11–10–9–8 (S).
- C. (cf.) carinatus (var. rugosus) (KIDSTON and JONGMANS), hor. 10-7-4 (S).
- C. (cf.) undulatus (STERNBG.), hor. 10 (S), hor. 3 (R).
- C. carinatus (var. rugosus) (KIDSTON and JONGMANS), hor. 8-7 (S).
- C. ramosus (WEISS), hor. 7 (S).
- C. semicircularis (WEISS), hor. 15 (W), hor. 8 (S).
- C. approximatus (BRONGT), hor. 8 (S).
- C. Sachsei (STUR.), hor. 27 (W), hor. 11-8 (S).
- C. Scheutzeiformis (KIDSTON and JONGMANS), hor. 9 (S).
- C. Scheutzeiformis (forma Waldenburgensis) (KIDSTON and JONGMANS), hor. 23-16 (W), hor. 11 (S).
- C. Gopperti (ETTINGHAUSEN), hor. 27 (W).
- C. (cf.) palæceus (STUR.), hor. 2 (R).
- C. verticillatus (LIND and HUTT), hor. 12 (W).
- Calamites (rhizomes), hor. 6 (S), hor. 1 (R).

Calamites sp. indet. 20 horizons (W-S-R).

Genus Asterophyllites.

- A. longifolius (STERNBG.), hor. 27 (W), hor. 11 (S).
- A. equisetiformis (SCHLOTH.), hor. 28–27–26–17–15 (W), hor. 11–10–9–7–6–4 (S), hor. 3–2–1 (R).
- A. chæræformis (STERNBG.) (formerly known as Calamocladus chæræformis), hor. 28-27-26-17-15-14 (W), hor. 11-9 (S).

VOL. CCXVII.-B.

107

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

CLASS EQUISETALES (continued).

Genus Asterophyllites (continued).

- A. radiata (vera) (BRONGT), hor. 11-9 (S), hor. 2 (R).
- A. grandis (ZEILLER), hor. 14 (W).
- A. (cf.) Dumasi (ZEILLER), hor. 13 (W).
- Asterophyllites sp. indet. 10 horizons (W-S).

Genus Annularia.

- A. galioides (LIND and HUTT), hor. 16 (W), hor. 11 (S).
- A. sphenophylloides (ZENKER), hor. 14 (W), hor. 7-6 (S), hor. 1 (R).
- A. stellata (SCHLOTH.), hor. 15 (W), hor. 4 (S), hor. 3-1 (R).
- A. radiata (vera) (BRONGT), hor. 28–27–16–14–12 (W), hor. 11–9–8–7–6–4 (S), hor. 3–2 (R).
- A. radiata (AUCTT.), hor. 28-27-17-15 (W), hor. 11-10-9-8-6-4 (S), hor. 2 (R).
- A. (cf.) stellata (SCHLOTH.), hor. 3–2 (R).
- A. ramosa (WEISS), hor. 27 (W), hor. 9 (S).
- A. spicata (GUTBIER), hor. 16 (W).
- Annularia sp. indet. 9 horizons (W-S-R).
- Phragma of Calamites, hor. 24-16 (W), hor. 8-7-6 (S).

Foliage of Calamites palaeceus (STUR.), hor. 29-15 (W), hor. 2 (R).

Calamite leaves, hor. 28 (W).

Calamite stem leaves, hor. 11 (S).

Genus Myrophyllites.

M. gracilis (ARTIS), hor. 28-27-15 (W), hor. 11-10-9-8-7-6 (S). Myrophyllites sp. indet. 14 horizons (W-S-R). (cf.) Myrophyllites sp. 3 horizons (S).

Genus Pinnularia.

P. capillacea (LIND and HUTT), hor. 15 (W), hor. $11-10-9-8-7-6_{a}^{*}(S)$, hor. 2-1 (R). *P. columnaris* (ARTIS), hor. 29-28-16 (W), hor. 9-6-4 (S).

Genus Calamostachys.

Calamostachys sp. indet. hor. 8 (S).

Genus Palæostachya.

P. elongata (PRESL.), hor. 22 (W).
P. gracillima (WEISS), hor. 8-7-6 (S).
Palæostachya sp. indet. (WEISS), hor. 14 (W), hor. 11 (S).

CLASS EQUISETALES (continued).

Genus Macrostachya.

Macrostachya sp. indet., hor. 1 (R).

Calamite cones sp. indet. 7 horizons (W).

Cones of Asterophyllites equisetiformis, hor. 26 (W), hor. 9 (S), hor. 1 (R).

Calamite bulbil sp. (bulbous cone), hor. 27 (W), hor. 8-7 (S).

Megaspores of Calamites, hor. 3 (E).

Class Equisetales—Summary.

Equisetites (stems) 1, Calamite stems 21, Calamite branch foliage, Asterophyllites type 7, Annularia type 9, Calamite stem foliage 3, Calamite phragma 1, Calamite root organ—Myrophyllites type 3, Pinnularia 2, Calamite cones 8, Calamite megaspores 1. Total, 56.

CLASS SPHENOPHYLLALES.

Genus Sphenophyllum.

S. emarginatum (BRONGT), hor. 11-10-9-8-7-6-4 (S), hor. 3-2-1 (R).

S. cuneifolium (STERNBG.), hor. 28-27-24-23-22-17-16-15-14-12 (W), hor. 11-9 (S).

S. trichomotosum (STUR.), hor. 10-9 (S).

S. cuneifolium (forma saxifragæfolium) (STUR.), hor. 22–16 (W).

S. majus (BRONN.), hor. 17-14 (W), hor. 9 (S).

S. (cf.) longifolium (GERMAR.), hor. 7 (S), hor. 2–1 (R).

S. (cf.) papilionaceum (GRAND EURY) (Sphen. Thoni, MOHR in JUNGMAN), hor. 7 (S), hor. 2-1 (R).

Sphenophyllum sp. indet. 15 horizons (W-S-R).

Class Sphenophyllales-Total, 8 species.

CLASS LYCOPODIALES.

Genus Lepidodendron.

- L. (cf.) lanceolatum (LESQX.), hor. 1 (R).
- L. Wortheni (Lesqx.), hor. 3–2 (R).
- L. (cf.) aculeatum (STERNBG.), hor. 13 (W), hor. 3 (S).
- L. aculeatum (STERNBG.), hor. 29-24-23-20-18-15-13-12 (W), hor. 11-9 (S).
- L. fusiforme (CORDA), hor. 4 (S), hor. 3 (R).
- L. obovatum (STERNBG.), hor. 24–22–15 (W), hor. 7 (S).
- L. rimosum (STERNBG.), hor. 23 (W), hor. 11-7 (S).
- L. simile (KIDSTON), hor. 15-13-12 (W), hor. 11-10-9 (S), hor. 1 (R).
- L. ophiurus (BRONGT), hor. 24-19-15 (W), hor. 9 (S).
- L. (cf.) simile (KIDSTON), hor. 13 (W).

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

CLASS LYCOPODIALES (continued).

Genus Lepidodendron (continued).

- L. dissetum (SAUVEUR), hor. 23-15 (W), hor. 11 (S).
- L. acutum (PRESL.), hor. 26-15 (W).
- L. loricatum (ARBER), hor. 5-4 (S), hor. 3 (R).
- L. (cf.) aculeatum (STERNBG.), hor. 3 (R).
- L. Gaudryi (RENAULT), hor. 12 (W).
- L. Jarackewski (ZEILLER), hor. 12 (W).
- L. lanceolatum (Lesqx.), hor. 3 (R).
- L. (cf.) ophiurus (forma dilatata) (LIND and HUTT), pro. sp. hor. 12 (W).

Lepidodendron (twigs) indet. hor. 29 (W), hor. 3 (R).

Lepidodendron sp. (Knorria state), hor. 26-12 (W), hor. 9 (S).

Lepidodendron (small Lycopod branches), hor. 25 (W).

Lepidodendron sp. indet. 21 horizons (W-S-R).

Genus Sigillaria.

S. (cf.) discophora (KENIG), hor. 1 (R).

- S. (cf.) tesselata (BRONGT), hor. 23-22-20 (W), hor. 9-7-5-4 (S), hor. 2 (R)
- S. (cf.) reniformis (BRONGT), hor. 7 (S).
- S. (cf.) nudicaulis (BOULAY), hor. 7 (S).
- S. camptotoenia (WOOD), hor. 23 (W), hor. 10 (S).
- S. lævigata (BRONGT), hor. 28–23 (W), hor. 7 (S).
- S. Schlotheimi (BRONGT), hor. 9 (S).
- S. Walchi (SAUVEUR), hor. 11 (S).
- S. mammilaris (BRONGT), hor. 28-26-23-16-15 (W.)
- S. mammilaris (forma Dournaisii) (BRONGT), hor. 26 (W).
- S. elongata (BRONGT), hor. 16–15 (W).
- S. (cf.) elongata (BRONGT), hor. 16 (W).
- S. rugosa (BRONGT), hor. 28 (W).
- S. ovata (SAUVEUR), hor. 11 (S).
- S. elegans (BRONGT), hor. 23 (W).
- S. scutellata (BRONGT), hor. 23 (W).
- S. nudicaulis (BOULAY), hor. 11 (W).
- S. tesselata (BRONGT), hor. 23 (W), hor. 8-7-4 (S), hor. 2 (R).
- S. Boblayi (BRONGT), nor. 7 (S).
- Sigillaria sp. (decorticated), hor. 16 (W), hor. 11-7 (S).
- Sigillaria (pith cast), hor. 28-23 (W).
- Sigillaria sp. indet. 10 horizons (W-S-R).

Genus Ulodendron.

Ulodendron sp. indet., hor. 15 (W).

BIOLOGICAL

THE ROYAL

PHILOSOPHICAL TRANSACTIONS

CLASS LYCOPODIALES (continued).

Genus Bothrodendron.

B. punctatum (LIND and HUTT), hor. 28–23 (W). Bothrodendron sp. indet., hor. 5 (S), hor. 3 (R).

Genus Lepidophloios.

L. laricinus (STERNBG.), hor. 11-9-7-6 (S). L. acerosus (LIND and HUTT), hor. 24-12 (W). (cf.) Lepidophloios sp. indet., hor. 7 (S). Lepidophloios sp. indet., 7 horizons (W-S-R).

Genus Asolanus.

A. camptotænia (Wood), hor. 24-16-15 (W), hor. 11-10-9 (S), hor. 3 (R).

Genus Halonia.

H. regularis (LIND and HUTT), hor. 29–15 (W). H. tortuosa (LIND and HUTT), hor. 29 (W).

Genus Lepidophyllum.

L. aculeatum (STERNBG.), hor. 17 (W), hor. 9 (S).

L. majus (BRONGT), hor. 16 (W), hor. 1 (R).

L. acuminatum (Lesqx.), hor. 4 (S), hor. 1 (R).

L. lanceolatum (BRONGT), hor. 29-24-19-17-12 (W), hor. 6-4 (S), hor. 3-2 (R).

L. intermedium (LIND and HUTT), hor. 7 (S).

L. (cf.) lanceolatum (LIND and HUTT), hor. 2 (R).

L. (cf.) acuminatum (Lesqx.), hor. 7 (S).

L. anthemis (KŒNIG), hor. 19–12 (W).

L. Moyseri (ARBER), hor. 4 (S).

L. Campbellianum (Lesqx.), hor. 12 (W).

L. Morrisianum (Lesqx.), hor. 19 (W).

Lepidophyllum indet., hor. 2 (R).

Lepidophyllum sp. indet., 20 horizons (W-S-R).

Genus Sigillariophyllum.

S. bicarinatum (LIND and HUTT), hor. 18 (W), hor. 9-8-7 (S), hor. 1 (R).

Sigillariophyllum sp. indet., 4 horizons (W-S-R).

(cf.) Sigillarian leaves, indet., 4 horizons (W-S-R).

Sigillarian leaves, indet., 2 horizons (W-R).

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

CLASS LYCOPODIALES (continued).

Genus Stigmaria.

S. reticulata (GÖPPERT), hor. 15 (W).

S. ficoides (STERNBG.), hor. 29-28-26-24-22-21-20-19-18-17-16-15-13-12 (W), hor. 11-10-8-7-5-4 (S), hor. 3-2-1 (R).

S. minuta (Göppert) (pro-var.), hor. 22-12 (W).

Stigmaria n. sp. (not yet determined), hor. 13 (W).

Stigmaria sp. indet., 8 horizons (W-S-R).

Stigmaria sp. indet. (variety), hor. 24 (W).

Genus Stigmariaopsis.

S. anglica (KIDSTON), hor. 16–12 (W).

Genus Lepidostrobus.

L. triangularis (ZEILLER), hor. 19-14 (W).

L. ophiurus (BRONGT), hor. 19 (W).

L. anthemis (KœNIG), hor. 25–24–20–19–18–15–14 (W), hor. 4 (S).

L. minor (GOODE), hor. 3-2 (R).

L. brevifolius (ARBER) (non LESQX.) hor. 3 (R).

Lepidostrobus sp. indet., 25 horizons (W-S-R).

Transverse section of *Lepidostrobus*, hor. 20 (W).

Genus Sigillariostrobus.

Sigillariostrobus sp. indet., hor. 8 (S), hor. 2 (R).

(cf.) Sigillarian cone, hor. 7 (S).

Sigillarian stem with cone scars, hor. 11 (S). Sporangia of Sigillarian cone, hor. 8 (S). Megaspores of Lycopods, hor. 2 (R).

Genus Lepidocystis.

L. fraxiniformis (LESQX.), hor. 12 (W), hor. 11-8 (S). L. vesicularis (LESQX.) hor. 16 (W). Lepidocystis sp. indet., hor. 16-12 (W), hor. 1 (R). Sporangia of Lycopods, hor. 25 (W).

Genus Bothrostrobus.

Bothrostrobus sp. indet., hor. 12 (W).

Class Lycopodiales—Summary.

Lepidodendron 22 sp., Sigillaria 22 sp., Ulodendron 1 sp., Bothrodendron 2 sp., Lepido-phloios 4 sp., Asolanus 1 sp., Halonia 2 sp., Lepidophyllum 13 sp., Sigillariophyllum, 4 sp., Stigmaria 7 sp., Lepidostrobus 7 sp., Sigillariostrobus 4 sp., Bothrostrobus 1 sp., Lepidocystis 3 sp., Megaspores of Lycopods 1, Sporangia of Lycopods 1.

Total, 95 sp.

CLASS FILICALES AND PTERIDOSPERMS.

Genus Neuropteris.

- N. Scheuchzeri (HOFFM.), hor. 23-19-14 (W), hor. 11-10-5-4 (S), hor. 3-2-1 (R).
- N. ovata (HOFFM.), hor. 5-4 (S), hor. 3-2-1 (R).
- N. (cf.) ovata (HOFFM.), hor. 4 (S), hor. 3-2-1 (R).
- N. rarinervis (BANBURY), hor. 28-26-23-16-12 (W), hor. 11-9-7-6-4 (S), hor. 3-2-1 (R).
- N. obliqua (BRONGT), hor. 28-22-14 (W), hor. 11-8-4 (S), hor. 1 (R).
- N. flexuosa (Sternbg.)? hor. 23 (W), hor. 3-2-1 (R).
- N. (cf.) flexuosa (STERNBG.), hor. 3–2 (R).
- N. fimbriata (Lesqx.), hor. 3-2-1 (R).
- N. (cf.) macrophylla (BRONGT), hor. 26 (W), hor. 2 (R).
- N. (cf.) rarinervis (BANBURY), hor. 3-2 (R).
- N. lonchitica (BRONGT), hor. 9 (S).
- N. (cf.) tenuifolia (SCHLOTH.), hor. 8-7 (S).
- N. tenuifolia (SCHLOTH.), hor. 29-28-26-25-24-21-19-16-15-12 (W), hor. 11-10-9 (S).
- N. heterophylla (BRONGT), hor. 29–28–27–26–25–24–23–22–19–18–17–13–12 (W), hor. 11–10–9–8–7–6–4 (S).
- N. (cf.) callosa (LIND and HUTT), hor. 23 (W), hor. 11-9-6 (S).
- N. gigantea (STERNBG.), hor. 26-25-23-20-19 (W), hor. 11 (S).
- N. gigantea (falcate form) (STERNBG.), hor. 23-20-19-14 (W), hor. 11-9 (S).
- N. obtusifolia (KIDSTON), hor. 9 (S).
- N. pseudogigantea (POTONIE), hor. 22–20–19–18 (W).
- N. grangeri (BRONGT), hor. 27 (W).
- N. camptophylla (GOTHAN and JONG), hor. 28 (W).
- N. (cf.) fimbriata (Lesqx.), hor. 2 (R).
- N. gibbosa (Lesqx.), hor. 10 (S).
- N. (cf.) microphylla (BRONGT), hor. 6 (S).
- (cf.) N. Missouriensis (Lesqx.), hor. 8 (S).
- Neuropteris sp. indet., 13 horizons (W-S-R).

Genus Sphenopteris.

S. neuropteroides (BOULAY), hor. 19 (W), hor. 11-4 (S), hor. 3-2 (R).

- S. (cf.) neuropteroides (BOULAY), hor. 6-4 (S), hor. 2 (R).
- S. obtusiloba (BRONGT), hor. 28-23-14 (W), hor. 11-9 (S).
- S. renaultia (with fructification) (ZEILLER), hor. 9 (S).
- S. obtusifolia (BRONGT), hor. 9 (2S).
- S. amæna (STUR.), hor. 9 (S).
- S. artemisiæfolioides (CREPIN), hor. 11 (S).
- S. (renaultia) chæræphylloides (BRONGT), hor. 11 (S).
- S. Cæmansi (ANDRÆ), hor. 11 (S).
- S. obtusiloba (forma convexiloba) (SCHIMPER), hor. 11 (S).

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

CLASS FILICALES AND PTERIDOSPERMS (continued).

Genus Sphenopteris (continued).

- S. (cf.) latifolia (BRONGT), hor. 11 (S).
- S. Conwayi (LIND and HUTT), hor. 11 (S).
- S. rotundifolia (ANDRÆ), hor. 11 (S).
- S. Sauveri (CREPIN), hor. 26–23 (W).
- S. Andræana (ROEHL), hor. 23 (W).
- S. Sturi (GOTHAN), hor. 27 (W).
- S. Laurenti (ANDRÆ), hor. 23 (W).
- S. nummularia (GUTBIER), hor. 27 (W).
- S. (Palmopteris) Sturi (GOTHAN), hor. 27 (W).
- S. (cf.) trifolialata (ARTIS), hor. 9 (S).
- S. pecopteroides (KIDSTON), hor. 2 (R).
- S. integra (ANDRÆ), hor. 2 (R).
- S. striata (GOTHAN), hor. 12 (W), hor. 10 (S).
- Stems of S. Hoeninghausi (BRONGT), hor. 28 (W).
- Sphenopteris sp. indet. (with fructification), hor. 9 (S).
- Sphenopteris sp. indet., 14 horizons (W-S-R).

Genus Pecopteris.

- (cf.) P. unita (BRONGT), hor. 2 (R).
- P. (Asterotheca) miltoni (ARTIS), hor. 11-4 (S), hor. 3-2-1 (R).
- P. (cf.) (Asterotheca) miltoni (ARTIS), hor. 8–6 (S), hor. 3–2 (R).
- P. (cf.) (Asterotheca) arborescens (SCHLOTH.) ? hor. 23 (W), hor. 9 (S), hor. 2-1 (R).
- P. Volkmanni (SAUVEUR), hor. 28 (W), hor. 11-9 (S).
- P. Cyathea (BRONGT), hor. 10-4 (S), hor. 3-2-1 (R).
- P. miltoni (BRONGT), hor. 15 (W).
- P. muricata (with fructification) (SCHLOTH.), hor. 23 (W).
- P. (Asterotheca) Cyathea (SCHLOTH.), hor. 2 (R).
- P. (cf.) lepidorachis (BRONGT), hor. 10-4 (R).
- Pecopteris sp. indet., 9 horizons (W-S-R).
- (cf.) Pecopteris sp. indet., 1 horizon (S).
- P. unita (BRONGT), hor. 2 (R).

Genus Eupecopteris.

- E. Camerontensis (KIDSTON), hor. 3 (R).
- E. Bucklandi (BRONGT), hor. 3 (R).
- Eupecopteris sp. indet., 5 horizons (S-R).

Genus Asterotheca.

A. oreopteridia (SCHLOTH.), hor. 3 (R).

CLASS FILICALES AND PTERIDOSPERMS (continued).

Genus Mariopteris.

- M. muricata (forma nervosa) (LIND and HUTT), hor. 23 (W), hor. 9 (S), hor. 3 (R).
- M. acuta (BRONGT), hor. 28–27–15 (W), hor. 11 (S), hor. 1 (R).
- M. muricata (SCHLOTH.), hor. 28-26-25-24-23-22-21-19-17-15-14-13-12 (W), hor. 11-10-9-6 (S), hor. 1 (R).
- M. (cf.) latifolia (BRONGT), hor. 11 (S).
- M. Daviesi (n. sp.) (KIDSTON), hor. 4 (S), hor. 3-2-1 (R).
- M. (cf.) acuta (BRONGT), hor. 28-27-15 (W), hor. 11 (S).
- Mariopteris sp. indet., 11 horizons (W-S-R).
- **M. hirta* (STUR.), hor. 15 (W).
- *M. nobilis (ACHEPOHL), hor. 11 (S).
- **Mariopteris* sp. (C), hor. 10 (S).

Genus Dactylotheca.

Dactylotheca sp. ? indet., hor. 9 (S).

Genus Linopteris.

- L. (cf.) munsteri (EICHWALD), hor. 4 (S).
- L. munsteri (EICHWALD), hor. 28-16-14 (W), hor. 11-4 (S).
- L. obliqua (BUNBURY), hor. 10 (S).

Genus Crossotheca.

- C. Crepini (ZEILLER), hor. 16 (W).
- C. Hæninghausi (EICHWALD), hor. 28 (W).
- C. Boulayi (with fructification) (KIDSTON), hor. 28 (W), hor. 11 (S).
- C. Boulayi? (ZEILLER), hor. 11-9 (S).
- C. sagitta (ZEILLER), hor. 10 (S).

Genus Corynepteris.

- C. coralloides (GUTBIER), hor. 11 (S).
- C. Sternbergi (ETTING), hor. 28 (W), hor. 3 (R).

Genus Dolerophyllum.

D. pseudopeltatum (GRAND EURY), hor. 28-12 (W). Dolerophyllum sp. indet., 6 horizons (S-R). (cf.) Dolerophyllum sp. indet., 4 horizons (S-R).

Genus Odontopteris.

- O. Lindleyana (STERNBG.), hor. 4 (S), hor. 3-2-1 (R).
- O. Conwayi (LIND and HUTT), hor. 11 (S).

* Omitted from Chart.

VOL. CCXVII.---B.

 \mathbf{R}

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

CLASS FILICALES AND PTERIDOSPERMS (continued).

Genus Alloiopteris.

A. Sternbergi (ETTING), hor. 3 (R).

A. (Corynepteris serrula) (Lesqx.), hor. 11 (S).

Alloiopteris sp. indet., 1 horizon (R).

Genus Alethopteris.

A. Serli (BRONGT), hor. 11 (S), hor. 2-1 (R).

A. Grandini (BRONGT), hor. 2 (R).

A. aquilina (SCHLOTH.), hor. 7–4 (S).

A. lonchitica (Schloth.), hor. 28–27–19–12 (W), hor. 11–9–7 (S).

A. integra (GOTHAN), hor. 11-9 (S).

A. decurrens (ARTIS), hor. 28-26-25-24-23-15 (W).

A. gracillima (BOULAY), hor. 22 (W).

A. valida (BOULAY), hor. 26 (W).

A. pseudoaquilina (POTONIE), hor. 3 (R).

Alethopteris sp. indet., 6 horizons (W-S-R).

Genus Eremopteris.

E. artemisiæfolia ? (STERNBG.), hor. 24 (W), hor. 11 (S). Eremopteris sp. indet., 1 horizon (W).

Genus Cyclopteris.

Cyclopteris (GUTBIER), hor. 11 (S). Cyclopteris sp. indet., 16 horizons (W-S-R). (cf.) Cyclopteris sp. indet., 1 horizon (S).

Genus Aphlebia.

A crispa (GUTBIER), hor. 15 (W).

A. (cf.) crispa (GUTBIER), hor. 16 (W).

A. (cf.) anomala (BRONGT), hor. 16 (W).

Aphlebia sp. indet., 3 horizons (W-S-R).

Genus Renaultia. A. chæræphylloides (BRONGT), hor. 16 (W), hor. 10-7 (S).

Genus Spiropteris.

Spiropteris sp., hor. 10 (S).

Genus Scolecopteris.

S. (Acitheca) polymorpha (BRONGT), hor. 3 (R).

Genus Zeilleria.

Z. avoldensis (STUR.), hor. 28-26 (W).

Genus Ptychocarpus.

P. unita (BRONGT), hor. 2 (R).

BIOLOGICAL

THE ROYAL I SOCIETY

PHILOSOPHICAL TRANSACTIONS

CLASS FILICALES AND PTERIDOSPERMS (continued).

Genus (cf.) Caulopteris.

(cf.) Caulopteris sp. indet., hor. 7 (S).

Rachis of Ferns or Fern-like Plants.

19 horizons (W–S–R).

Genus Triginocarpus.

T. oblongus (LIND and HUTT), hor. 11 (S).

T. Parkinsoni (BRONGT), hor. 28-22-12 (W).

Triginocarpus sp. indet., 9 horizons (W-S-R).

Genus Lagenospermum.

Lagenospermum sp. indet. (?), hor. 22 (W).

Genus Neurospermum.

N. tunicatum (GÖPP and BERG), hor. 3 (R). (cf.) N. tunicatum (GÖPP and BERG), hor. 2 (R).

Genus Polypterocarpus.

P. ornatus (ARBER), hor. 19 (W), hor. 11 (S). Polypterocarpus sp. indet., hor. 2 (R).

Genus Carpolithus.

C. Cordei (associated with Neuropteris Scheuchzeri), hor. 4 (S), hor. 1 (R). C. perpusillus (LESQX.), hor. 2 (R). Carpolithus sp. (allied with C. perpusillus (LESQX.), hor. 4, hor. 3-2 (R).

Genus Holeospermum.

H. multistriatum (PRESL.), hor. 4 (S). Holeospermum sp. indet., hor. 2 (R).

Genus Microspermum.

Microspermum sp. indet., hor. 2 (R).

Genus Diplotmema.

*D. Sturi (GOTHAN), hor. 27 (W).

Seeds (?) (probably Pteridospermous).

16 horizons (W–S–R).

Class Filicales and Pteridosperms.—Summary. Stems 2; Fronds and Scale Leaves 124; Seed Organs 15.

Total, 141.

* Omitted from Chart.

 $\mathbf{R} \ \mathbf{2}$

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

CLASS CORDAITALES.

Genus Cordaites.

C. palmæformis (GÖPPERT), hor. 12 (W), hor. 7-4 (S).

C. (cf.) palmæformis (GÖPPERT), hor. 2–1 (R).

C. borassifolius (STERNBG.), hor. 9–8–4 (S), hor. 3 (R).

C. (cf.) borassifolius (STERNBG.), hor. 3 (R).

C. (Dorycordaites) palmæformis (GÖPPERT), hor. 27-26-15 (W), hor. 3 (R).

C. principalis (GERMAR), hor. 28-17-13 (W), hor. 9-8-7 (S), hor. 3 (R).

Cordaites sp. indet., 22 horizons (W-S-R).

Genus Poa-cordaites.

P. microstachys (GOLD), hor. 2 (R).

(cf.) Poa-cordaites sp. indet., 1 horizon (R).

Genus Hysterites.

H. cordaites (GRAND, EURY), hor. 2 (R).

Genus Artisia.

A. approximata (BRONGT), hor. 28-26-13 (W), hor. 11-9-7 (S). A. transversa (ARTIS), hor. 9-4 (S). Artisia sp. indet., 6 horizons (W-S-R).

Genus Cordaianthus.

C. Volkmanni (ETTING), hor. 18 (W). Cordaianthus sp. indet., 6 horizons (W-S-R).

Genus Samaropsis.

S. Meachami (KIDSTON), hor. 15 (W), hor. 9-8 (S).

S. pseudo-fluitans (DAWSON), hor. 14 (W).

S. cambrica n. sp. hor. 8-7 (S).

Samaropsis sp. indet., 11 horizons (W-S-R).

Genus Cordaicarpus.

C. Cordai (GEINITZ), hor. 28–25–16 (W). Cordaicarpus sp. indet., 3 horizons (S-R).

Genus Cordaicladus.

Cordaicladus sp. indet., 2 horizons (S).

Seeds (?) (probably belonging to Cordaitales).

6 horizons (W-S-R).

Class Cordaitales.—Summary. Foliage 10, Pith cast 3, Ovulate Shoots 2, Seeds 8.

Total, 23.

Summary of Species.

	Species.	
Equisetales	56	
Sphenophyllales	8	
Lycopodiales	95	
Filicales and Pteridosperms	141	
Cordaitales	23	
Total	323	
Species new to the South Wales Coalfield	83	
Species new to Britain :		
Equisetites rugosus (SCHIMPER).		
Asterophyllites (cf.) dumasi (ZEILLER).		
Lepidophyllum sp. (in Dr. KIDSTON'S collection).		
Lepidophyllum sp. (still unnamed).		
Lepidophyllum campbellianum (Lesqx.).		
Neuropteris (cf.) camptophylla (JONGMANS and GOTHAM).		
Neuropteris gibbosa (Lesqx.).		
Sphenopteris integra (ANDRÆ).		
Sphenopteris andræana (ROEHL.).		
Sphenopteris cæmansi (Andræ).		
Dolerophyllum pseudopeltatum (GRAND EURY).		
Lagenospermum sp.		
(cf.) Caulopteris sp.		
Hysterites cordaites (GRAND EURY).		
Specimens No. 1179, 1180, 1181, 1185 (in Dr. KIDSTON'S c unnamed).	ollection, sti	11
Mariopteris nobilis (ACHEPOHL).		
Mariopteris sp. (C).		
Diplotmema Sturi (GOTHAN).		
Total, 18.		

New Species recorded for the first time :--Stigmaria n. sp. (No. 11173) (in Dr. KIDSTON'S collection). Mariopteris Daviesi n. sp. (KIDSTON). Samaropsis Cambrica n. sp. (KIDSTON).

Total, 3.

(See Tabulation of Species-Chart III.)

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

REMARKS ON SPECIES.

CLASS EQUISETALES.

Genus Calamites.

C. Suckowi (BRONGT).—This species appears intermittently on 7 horizons in the Westphalian Series, and on 3 horizons in the Staffordian Series. Each horizon of the Radstockian Series shows its appearance.

C. ramosus (var. rugosus) (KIDSTON and JONGMANS).—This species appears twice only in the Westphalian Series, and once in the Staffordian Series.

C. cisti (BRONGT).—This species appears twice in the Westphalian Series, once in the Staffordian Series and twice again in the Radstockian Series.

C. carinatus (STERNBG.).—This species is found on 7 horizons in the Westphalian Series, on 5 horizons in the Staffordian Series, and on 2 horizons in the Radstockian Series.

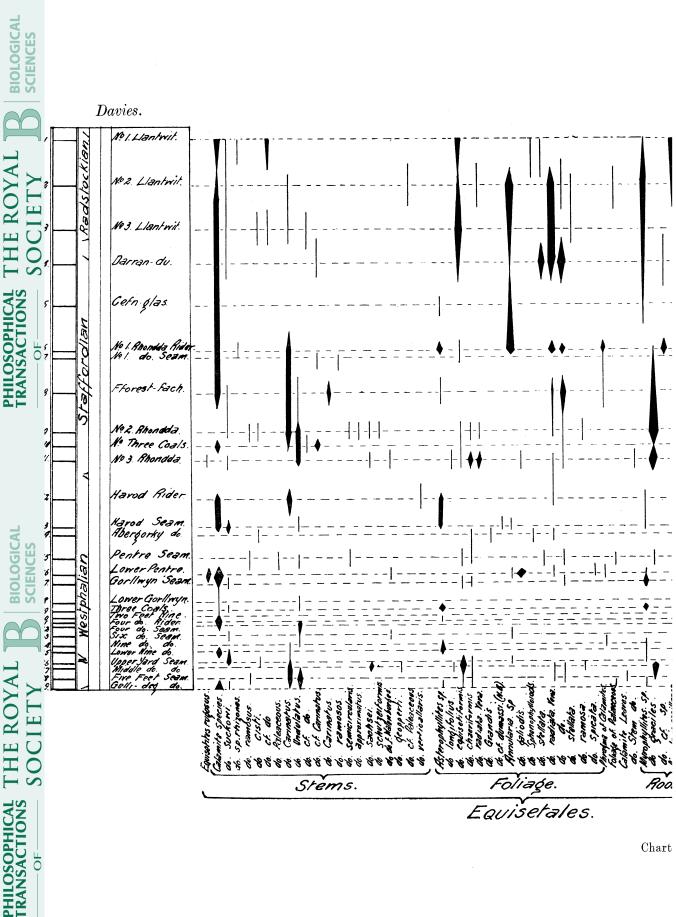
C. undulatus (STERNBG.).--This species shows itself on 10 horizons in the Westphalian Series and 4 horizons in the Staffordian Series—the four lowest—after which it disappears altogether. Calamites species (indeterminable) is a common occurrence in the whole range from the base to the top of the Coal Measures.

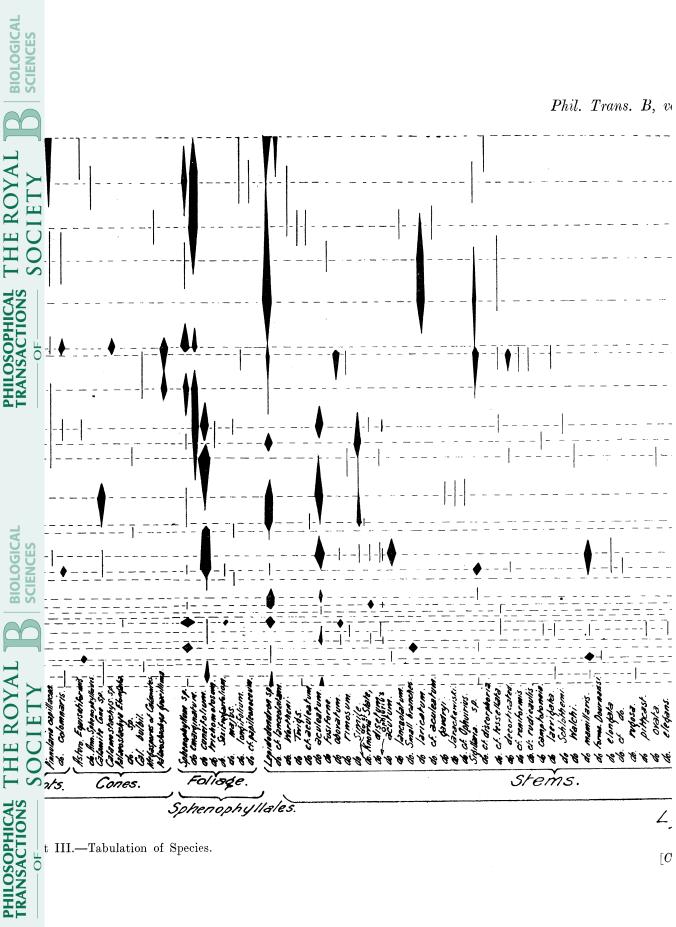
General Remarks.—From the foregoing it will be seen that the two species C. Suckowi (BRONGT) and C. carinatus (STERNBG.) have the longest range in time. Both commence in the lowest horizon in the Westphalian Series and persist upward to the top of the Radstockian Series. C. undulatus (STERNBG.), as previously stated, is limited in its range, being confined to the Westphalian Series and the lower half of the Staffordian Series. All the other species in the foregoing list can be considered to be, on the whole, very limited in time and scarce in number.

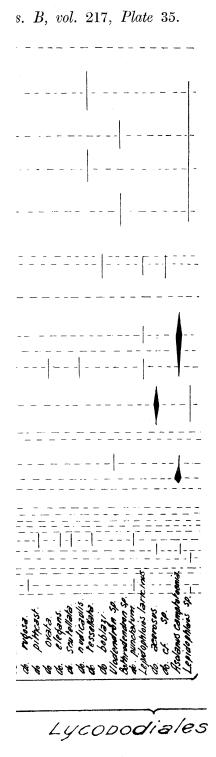
Genus Asterophyllites.

A. equisetiformis (SCHLOTH.).—This species appears on 5 different horizons in the Westphalian Series, on 6 horizons in the Staffordian Series, and on each of the 3 horizons of the Radstockian Series, commencing its range at the lowest horizon but one in the Coal Measures and extending upwards to the uppermost horizon.

Genus Annularia.


Annularia is best represented by A. Sphenophylloides (ZENKER), A. radiata (vera) (BRONGT) and A. radiata (AUCTT.). Each of these species has a long range in time from near the base of the Westphalian Series to the Radstockian Series.


Genus Myrophyllites.


M. gracilis (ARTIS) is well represented on the various horizons of the Westphalian and Staffordian Series, but Myrophyllites sp. without specific determination occur in each of the three groups or series.

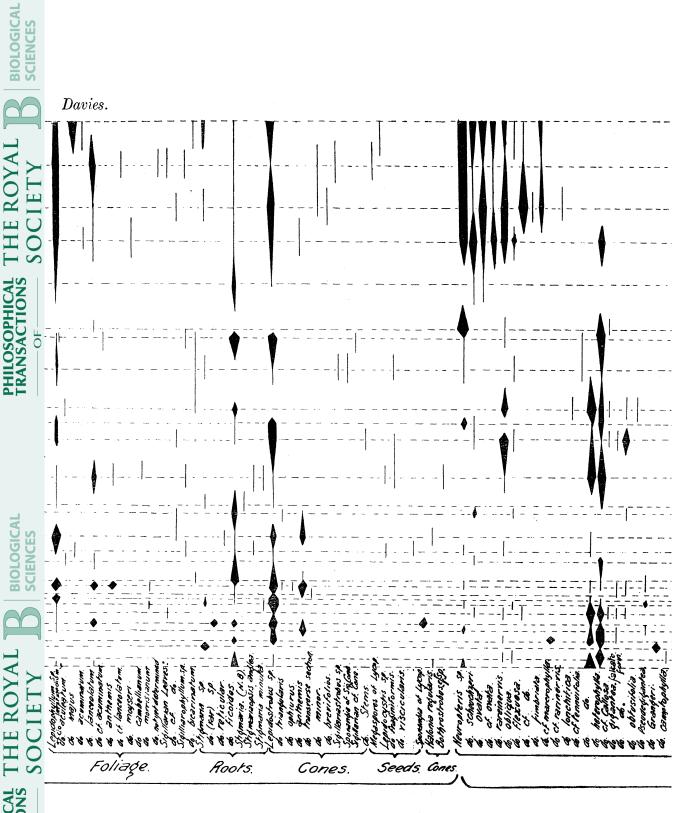
Genus Pinnularia.

P. columnaris (ARTIS).—This species also appears with an extended range in the Westphalian and Staffordian Series.

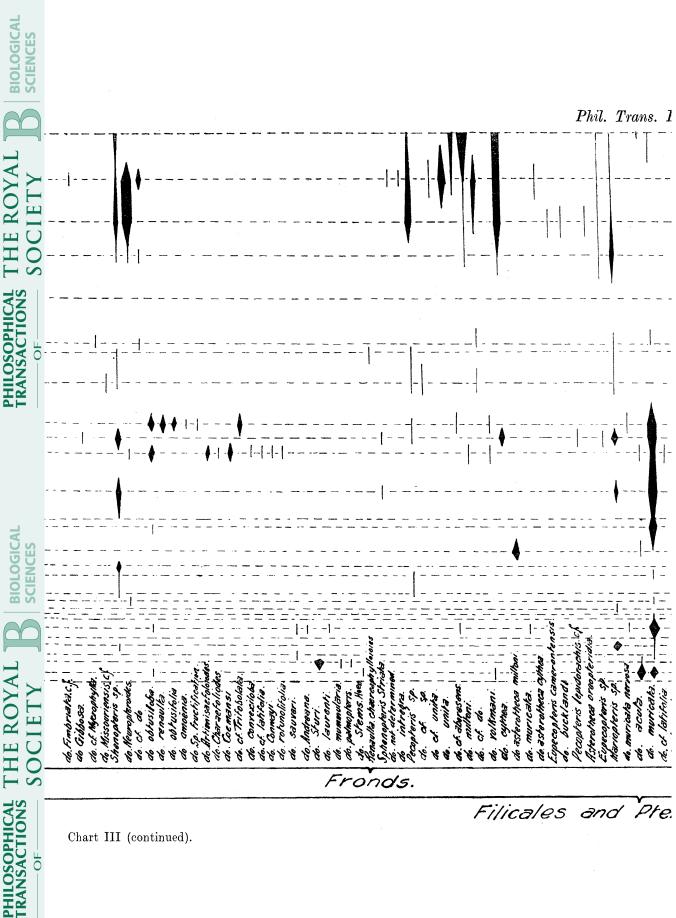
BIOLOGICAL SCIENCES

THE ROYAL SOCIETY

PHILOSOPHICAL TRANSACTIONS


> **BIOLOGICAL** SCIENCES

THE ROYAL SOCIETY


PHILOSOPHICAL TRANSACTIONS

- OF

[Continued on Plate 36.]

TRANSACTIONS S(

Trans. B, vol. 217, Plate 36. - ---___ Ordes. IDIED SING cty/othead sp. essothers for muricala. munsteri optoris of M muricata ne. latifalia obliques. Crepent. Joura Duriesi. 300/3. houldy 6 ð Ċ, в в Preridosperms.

[Concluded on Plate 37.]

PHILOSOPHICAL THE ROYAL BIOLOGICAL TRANSACTIONS SOCIETY SCIENCES

BIOLOGICAL

THE ROYAL SOCIETY

PHILOSOPHICAL TRANSACTIONS

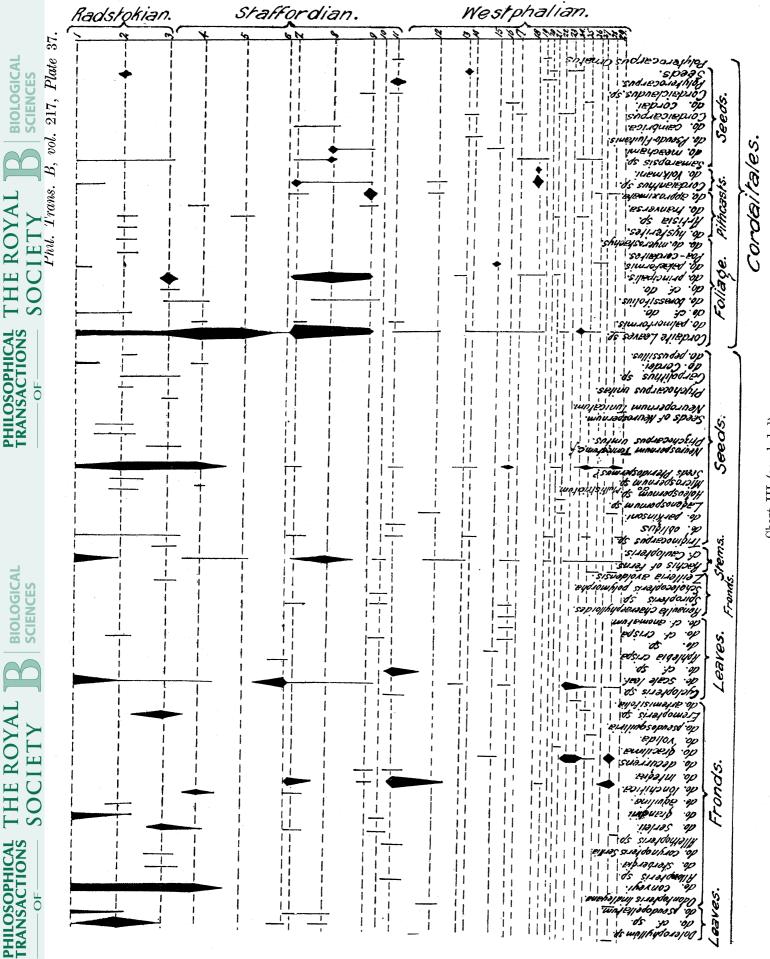


Chart III (concluded).

Calamite Cones.—Cones not specifically determined appear in each of the groups or series, from the base of the Coal Measures to the top horizon but one, namely, the No. 2 Llantwit Seam.

CLASS SPHENOPHYLLALES.

Genus Sphenophyllum.

Of the different species belonging to the Genus Sphenophyllum, the two species S. cuneifolium (STERNBG.) and S. emarginatum (BRONGT) have the longest range in time. The former commences near the base of the Westphalian Series and passes upward to the third horizon above the base of the Staffordian Series, namely, the No. 2 Rhondda Seam. The latter appears at the base of the Staffordian Series and continues upwards to the top of the Radstockian Series.

CLASS LYCOPODIALES.

Genus Lepidodendron.

Lepidodendron species (not specifically determined) has been found from the base of the Westphalian Series to the top of the Radstockian Series. Of the genus Lepidodendron, the species most frequently met with is L. aculeatum (STERNBG.). It appears on the lowest horizon, namely, the Gelli Deg Seam, and afterwards shows itself in no less than 7 horizons of the Westphalian Series. It dies out in the ninth horizon, the third from the base of the Staffordian Series.

The other species that occur in the Westphalian Series and terminate in the Staffordian Series, dying out in the No. 2 Rhondda Seam, are *L. simile* (KIDSTON) and *L. ophiurus* (BRONGT). There is one other species *L. dissetum* (SAUVEUR) that dies out on the eleventh horizon, namely, the No. 3 Rhondda Seam. *L. acutum* (PRESL.) is confined to the Westphalian Series. Species limited to the Radstockian Series are *L. Wortheni* (LESQX.) and *L. (cf.) lanceolatum* (LESQX.).

Genus Sigillaria.

The species common to the different horizons of the Westphalian and Staffordian groups are S. tesselata (BRONGT), S. camptotæna (WOOD) and S. lævigata (BRONGT).

The species belonging to the Westphalian Series are S. elongata (BRONGT), S. (cf.) elongata (BRONGT), S. elegans (BRONGT), S. mammilaris (forma dournaissi (BRONGT)), S. scutellata (BRONGT) and S. rugosa (BRONGT).

The species limited in their range to the top of the Staffordian Series are S. (cf.) reniformis (BRONGT); S. reniformis (BRONGT), S. (cf.) nudicaulis (BOULAY); S. Schlotheimi (BRONGT); S. walchi (SAUVEUR) and S. ovata (SAUVEUR).

The species belonging to the Radstockian Series alone are S. (cf.) discophora (KENIG) and S. (cf.) tesselata (BRONGT).

Genus Lepidophyllum.

Lepidophyllum sp. indet. has been found to occur in most of the horizons of the Westphalian, Staffordian and Radstockian Series.

121

122

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

The species known as *L. lanceolatum* (BRONGT) is found to have the longest range in time, because it appears at the very base of the Westphalian Series and it afterwards occurs here and there on various horizons until it reaches the uppermost horizon but one, the No. 2 Llantwit Seam in the Radstockian Series.

CLASS FILICALES AND PTERIDOSPERMS.

Genus Neuropteris.

Species belonging to the genus Neuropteris are found from the base of the Westphalian Series to the top of the Radstockian Series. Of the species that permitted specific determination, N. Scheuchzeri (HOFFMAN) is found to appear first in horizon 23, *i.e.*, the Six Feet Seam, Westphalian Series, and it afterwards shows its presence here and there to the uppermost horizon in the Radstockian Series, thus showing a long range in time.

N. rarinervis (BUNBURY) also shows a long range in time, commencing at the lowest horizon in the Westphalian Series and extending upwards on the different horizons to the uppermost but two in the Radstockian Series, *i.e.*, the No. 3 Llantwit Seam.

N. obliqua (BRONGT) commences from horizon 28, *i.e.*, the Five Feet Seam, in the Westphalian Series. It appears less frequently than N. rarinervis (BUNBURY) on the various horizons, but extends to the uppermost horizon of the Radstockian Series, *i.e.*, the No. 1 Llantwit Seam.

N. tenuifolia (SCHLOTHEIM) is persistent in the Westphalian Series almost throughout, but it shows a comparatively limited range in time, disappearing from all horizons above No. 2 Rhondda Seam, *i.e.*, horizon 9 in the Staffordian Series.

N. gigantea (STERNBG.) and N. (cf.) gigantea (STERNBG.) both extend from the Westphalian Series upwards into the Staffordian Series to horizon 9, but they are not evident in the higher horizons.

N. heterophylla (BRONGT) extends from the very base of the Westphalian Series to horizon 4 of the Staffordian Series, *i.e.*, the Darran Ddu Seam.

The uppermost horizons show species that are not found in the lower portion of the Staffordian and Westphalian Series, and are represented by N. (cf.) ovata (HOFFM.), N. ovata (HOFFM.), N. flexuosa (STERNBG.) and N. fimbriata (LESQX.).

Genus Sphenopteris.

The species belonging to the genus Sphenopteris occur rather infrequently throughout the three different series of Coal Measures. S. obtusiloba (BRONGT) appears near the base of the Westphalian Series on three different horizons. It afterwards passes upwards into the Staffordian and shows itself on 2 horizons, disappearing altogether above horizon 9, *i.e.*, the No. 2 Rhondda Seam.

It will be observed by reference to the list of species and their horizons that a number of species are confined to a single group, either the Westphalian, Staffordian or Radstockian Series, and it is concluded that certain species of the genus Sphenopteris are limited in their range in time.

BIOLOGICAL

THE ROYAL SOCIETY

PHILOSOPHICAL TRANSACTIONS

THE COAL MEASURES IN EAST GLAMORGANSHIRE.

Genus Pecopteris.

Pecopteris species are found as low in the Series as horizon 28, *i.e.*, the Five Feet Seam in the Westphalian Series, the lowest horizon but one. The Westphalian Series shows a poor distribution of the species. They rapidly increase in number in the Staffordian Series and finally reach their zenith in the 3 horizons of the Radstockian Series.

The species known as *P. miltoni* (BRONGT) has the longest range, extending from near the base of the Westphalian Series and isolated here and there to the uppermost horizon but one in the Radstockian Series.

Genus Mariopteris.

Of the eight species belonging to the Genus Mariopteris, M. acuta (BRONGT) appears to have a limited range. It commences to show itself in horizon 28, *i.e.*, the lowest horizon but one of the Westphalian Coal Series. Thence it passes upwards appearing infrequently in the different horizons.

M. muricata (SCHLOTHEIM) has the longest range. It appears on horizon 28 in the Westphalian Series and is found on most horizons of this series. It also shows itself on 4 horizons in the Staffordian Series, but is only evident once in the uppermost horizon of the Radstockian Series. Taking the three groups together, the Westphalian, Staffordian and Radstockian Series, it appears on no fewer than 18 horizons.

Genus Alethopteris.

A. lonchitica (SCHLOTHEIM) has the longest range. It extends from near the base of the Westphalian Series, horizon 28, upwards to horizon 7 in the Staffordian Series. It only appears here and there.

A. decurrens (ARTIS) is confined to the Westphalian Series, where it shows itself on 6 different horizons.

Possibly it would be well to mention that the species belonging to the Genus Alethopteris, A. Serli (BRONGT) appears once on the lowermost horizon in the Staffordian Series and does not appear again until it occurs on horizon 2 and horizon 1 in the Radstockian Series. Here it is very common.

CLASS CORDAITALES.

Genus Cordaites.

The leaves of Cordaites, sp. indet., have been found to occur on almost every horizon from the base of the Westphalian to the top of the Radstockian Series. It appears that *C. principalis* (GERMAR) has the longest range. It first shows itself near the middle of the Westphalian Series and occurs very irregularly until it reaches the base of the Radstockian Series. *C. borassifolius* (STERNBG.) is limited to the Staffordian and Radstockian Series.

VOL. CCXVII.-B.

124

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

IV. DIVERGENCE AND CONVERGENCE OF SPECIES.

Remarks and General Remarks.

(See Chart IV and Table B, showing Divergence and Convergence of Species.)

Introduction. (See Table.)

The divergence shows the increasing number of occurrences of any species relative to the genus on the horizons dealt with. The convergence shows the decreasing number of any species. The table referred to above shows the number of times the species has occurred in the various horizons.

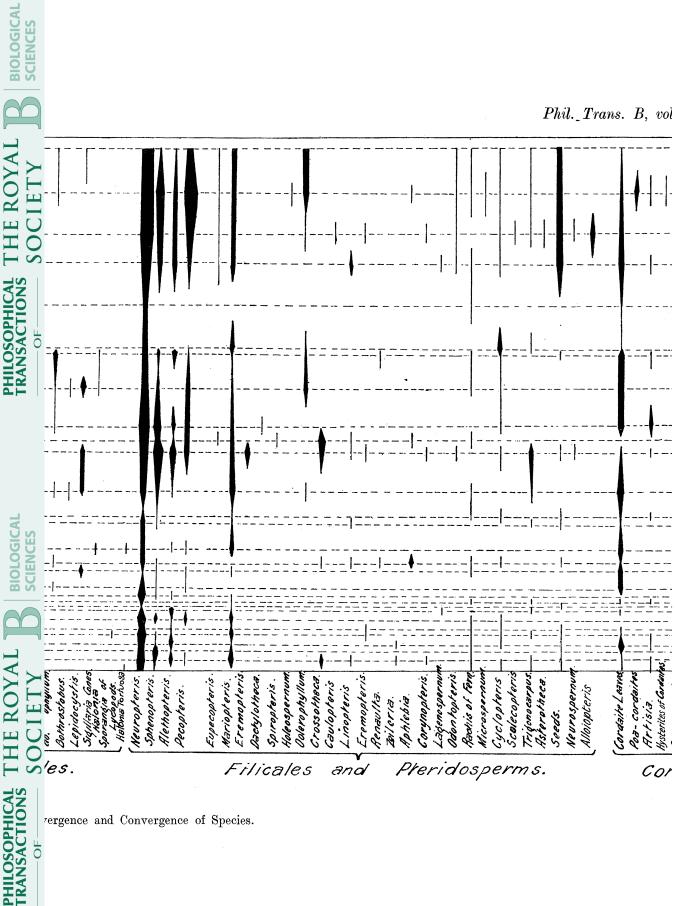
Calamites.—The Westphalian Series, on the whole, shows fewer species on the individual horizons than the Staffordian or Radstockian Series. The number of different species is greatest in the Staffordian Series, attaining its maximum at the No. 2 Rhondda Seam. The Radstockian Series shows more uniformity in number of species throughout.

Asterophyllites.—The number of species throughout the different horizons is few. It appears from the evidence that the greatest number occurs at the base of the Staffordian Series, namely, the No. 3 Rhondda Seam.

Annularia.—The species belonging to the Genus Annularia were at their zenith in the Staffordian Series; they decrease in number in the Westphalian Series below and also in the Radstockian Series above. Further, it is of interest that the species belonging to the Genus Annularia increase in number when the species belonging to the Genus Asterophyllites decrease in number, thus pointing to the gradual displacement of Asterophyllites by Annularia in the two upper Series, viz., the Radstockian and Staffordian.

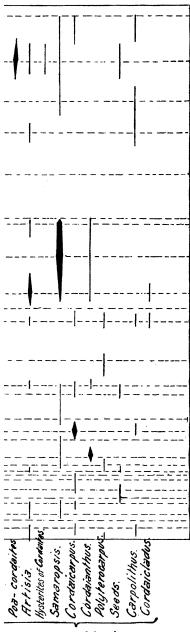
Sphenophyllum.—The individual species belonging to this genus are few in number. Not more than four species occur in the Westphalian and Staffordian Series, and even fewer in the Radstockian.

Lepidodendron.—The greatest number of species occur in the Westphalian and Radstockian Series. In the Hafod Rider Seam and the No. 3 Llantwit Seam seven species more are shown.


Sigillaria.—The species belonging to the Genus Sigillaria seem to be rather sudden in their appearance and disappearance. They are not so constant throughout the several horizons as the various species of Lepidodendron. It will be observed that in the Westphalian Series, two horizons yield eight and five species respectively. The maximum numbers which occur in the Staffordian Series are seven and four respectively. The zenith of the development of different species of the Genus Sigillaria appears in the Westphalian Series at the Six Feet Seam.

Neuropteris.—The species belonging to the Genus Neuropteris show an extraordinary persistence; each individual horizon from the base of the Coal Measures to the top gives evidence of its presence in varying numbers.

In the Westphalian Series, the greatest number of species is in the Six Feet Seam, which shows no fewer than eight species. The Staffordian Series shows eight species



BIOLOGICAL SCIENCES										
	Davies.									
ROYAL IETY		Nº I. LI.antwit.								
HEOC	J U	Nº 3. Llantwit.			 -		-			
E S	<i>s</i>	Daranddu. Cein- ģias.								
PHILOSOPHICAL TRANSACTIONS	¢	Nº 1. Rhondda Bide Nº 1. Rhondda Sai								
TR.	3 9	Fforest-Fach. Nº 2. Ahondda. Three Coals.		- 						·
:		Nº3. Rhondda. Rider Havod , Seam.					· · · · · · · · · · · · · · · · · · ·	 		-[-
GICAL CES	13 14 15	Havod Seam. Abergorky do. Pentre Seam.						 		
BIOLOGICAL SCIENCES	12 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	Lower Pentre. Gorllwyn. Lower Gorllwyn. Three Galls. Tho feet Ning. Feur Feet Seam. Siz Feet Seam.								
	23 37 16 37 24 29	Sisc Feet Sean. Aine Feet Sean. Lower Nine Feet Gener Sean. Michile Serie Sean. File Feet Sean. Gelli- deg Sean								
THE ROYAI SOCIETY		2	Equisétites. Calamites. Asterophyllites.	HINNIGEIA. Calamite Leaves do. phragma. Myrophyllites.	Calamite Cones. Calamite Cones. Palaestachya. Calamestachya Kebaspures d	Sphenophylläte	Lepicloctendrod Sigilizria. Bothrodendron IV.adeadron	Asolanus. Lepidophyllum Lepidophyllum Stigmaria.	Mejasporas of Lycopods Lepidostrobus Sigillariastrobu	do Stems.
			· .	Equise		6000064	112/05	Lyce	opodi	<i></i>]
PHILOSOPHICAL TRANSACTIONS					Spr	henophy	<i>µa)</i> €5.	Cha	art IV.—J	Div

vergence and Convergence of Species.

0

Cordaitales.

B, vol. 217, Plate 38.

BIOLOGICAL SCIENCES

TRANSACTIONS THE ROYAL

BIOLOGICAL SCIENCES

TRANSACTIONS SOCIETY

125

on the No. 3 Rhondda Seam and seven species each on the No. 2 Rhondda and Daran Ddu Seams. However, the Radstockian Series shows the highest number of species, the No. 3 Llantwit Seam, the No. 2 Llantwit Seam and the No. 1 Llantwit Seam, yielding nine, eight and eight species respectively.

From the evidence obtained it becomes apparent that the number of species increases upwards in the Groups, the Staffordian Series showing a greater number than the Westphalian and the Radstockian showing a marked increase on the Staffordian Series.

It can safely be stated that the Genus Neuropteris was very persistent in type, and also that it gave a good instance of an increasing number of species in an ascending order.

Sphenopteris.—The Westphalian Series shows that the species belonging to the Genus Sphenopteris were few in number. The Staffordian Series shows the maximum, particularly at the base of the series. The species occur again in decreasing number in the Radstockian Series, thereby showing that the greatest development of species occurred during the Staffordian Series time.

Alethopteris.—The maximum number of species belonging to the Genus Alethopteris is found in the No. 3 Rhondda Seam in the Staffordian Series. This is somewhat significant, because it will be remembered that the same result appeared with the Genus Sphenopteris on the same horizon. The genus is rather persistent throughout the Westphalian, Staffordian and Radstockian Series and shows itself on each horizon.

Pecopteris.—From the evidence obtained, it becomes apparent that the development of species of the Genus Pecopteris was greatest towards the close of the Carboniferous times, *i.e.*, in the Radstockian Series, and becomes less and less as we proceed downward through the Staffordian and Westphalian Series.

Mariopteris.—The maximum development of species of the Genus Mariopteris occurs in the Staffordian Series; it commences dominating at the No. 3 Rhondda Seam, the base of the Staffordian Series. The species belonging to the Mariopteris are persistent from the base to the top of the Coal Measures.

General Remarks.

Priority for persistency must be given to the species belonging to the Genus Neuropteris, because every individual horizon has been represented by one or more species. The second position must be given to the Genus Sphenopteris and the Genus Mariopteris; these are represented in 22 different horizons and are absent from 7 horizons only. The Genus Alethopteris takes the third place, its species occurring on 19 horizons, with no trace on 10 horizons. The fourth position for persistency is taken by the Genus Pecopteris, which is represented on 13 of the 29 horizons.

Cordaites.—Cordaites ranged from the base to the top of the local Coal Measures and was present on 24 out of the 29 horizons.

TRANSACTIONS SOCIETY SCIENCES

TRANSACTIONS SOCIETY SCIENCES SCIENCES

TABLE B showing the Divergence and Convergence of the Different Genera of Plants in each of the 29 Horizons of the East Glamorgan Coalfield.

126

		29	Gellideg Seam.	#~ 00 00
		28	тіче Гееt. Seam.	
		27	Middle Yard Seam.	4 m m - -
	-	26	Upper Yard Seam.	
		25	Lower Vine Feet Seam.	∞- - -4- α -
	×	24	Vine Feet.	x -
	-	23	Six Feet.	
	ries.	22	Four Feet. Seam.	∞ − ∞ ∞ − − ∞ −
	an Se	21	Upper Four Feet Seam.	
	phalia	20	Two Feet Vine Seam.	
	Westphalian Series	19	Three Coals Seam B.	∞ ∞ 4 4
		18	Гомег Gorllwyn Seam.	m m - m m
		17	Gorllwyn Seam,	
		16	Lower Pentre Seam.	-014 00 - 0.0 - - 0
		15	Pentre Seam.	400
		14	Арегдогку Seam.	- 01 02 - 02 - 12 - 03 12 12 12 12 12 12
		13	.ms92 botsH	⁻ ³ ⁻ ⁻ ³ ⁻
		12	Hafod Rider Seam.	¹ ¹ ¹ ¹ ¹ 1 1 1 1 1 1 1 1 1
	· .	П	No. 3 Rhondda Seam.	H448H HH 1844 HHHH H H R R
		10	Three Coals Seam A.	
	ries.	6	No. 2 Rhondda Seam.	[@@@@ =@ ##@ ===== =
	Staffordian Series.	8	Fforest Fach. Seam.	
	ffordi	7	No. I Rhondda Seam.	
	Sta	9	No. I Rhondda Rider Seam.	[\$\$\$\$\$\$ =\$\$\$\$ = \$\$== =
		5	.m.698	
		4	Seam.	m - 4 si si - 4 - si
	ian.	3	Vo. 3 Llantwit Seam.	0 - m -
	Radstockian	5	Seam.	4014 4010 -4
	Rad		.ms98	4 - 0 0 0 - 0 0 - -
			Genus.	Equisetites

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

BIOLOGICAL

· · · · · · · · · · · · · · · · · · ·	
≈ ∞ − ≈	
	- - - - -
	- - - - - -
∞ 4 H Ø Ø	
©	
	0 1 0 1 0 1 0 1 0 1 0 1 0 0
· · · · · · · · · · · · · · · · ·	
····	
-	
401 0 -	- - %
<u> ∞ ∞ ∞ ∞ 4 ∞ 6 1 − 1 − 1</u>	
-400- - -	
4	² ¹ ² ²
· · · · · · · · · · · · · · · · · · ·	
	الله الله الله الله الله الله الله الله
Sigillarian Cone Neuropteris - Sphenopteris - Pecopteris - Eupecopteris - Mariopteris - Baciylotheca - Spiropteris - Holosopermum Dolerophyllum Crossotheca - Caulopteris - Eremopteris - Eremopteris - Eremopteris - Corynepteris - Aphlebia - Corynepteris - Corynepteris - Rachis of Ferns	
rian ppteri opteri opteri opteri ppteri ppteri bita ppteri bita opteri s off	and Fernli Plants folopteris olecopteris iginocarpus terotheca terotheca terotheca incospermun leiopteris rdaite Leave or Cordaites tisia toriates rdaicarpus rdaicarpus eds rrdaicladus rrdaicladus
Sigillarian Cone Neuropteris Sphenopteris Alethopteris Pecopteris Mariopteris Bremopteris Crossotheca Crossotheca Crossotheca Crossotheris Eremopteris Renaultia Crossotheris Eremopteris Bremopteris Bremopteris Corynepteris Aphlebia Corynepteris Renaultia Aphlebia Corynepteris Renaultia Corynepteris Corynepteris Corynepteris	and Fernlik Plants Microspermum Scolecopteris Scolecopteris Astrotheca Astrotheca Seeds Neurospermum Alleiopteris Cordaite Leaves Artisia Hysterites Cordaites Cor
XOVATESOVEDCOTEXZAPA XOVATESOVEDCOTEXZAPA XOVATESOVEDCOTEXZAPA	NOXEAXNACEE XCCAXCC

THE COAL MEASURES IN EAST GLAMORGANSHIRE.

127

V. FAUNA.

Tabulation of Species and their Horizons. (See Chart V, showing Distribution of Species.)

Annelida.

Class Chætopoda. Genus Spirorbis. Spirorbis sp. hor. 11-9 (S). Worm burrows, hor. 28 (W).

Arthropoda.

Class Arachnida? Order: Xiphosura. Family: Belinuridæ. Genus Prestwichia (WOODWARD). Prestwichia sp., hor. 11 (S).

Class Insecta. Genus Archimylacris (SCUDDER). A. (Etoblattina) woodwardi (BOLTON) (type), hor. 9 (S). Archimylacris sp. (no specific determination made), hor. 17 (W), hor. 10–9 (S). Genus Dictyoneura sp. (GOLDENBERG). Order : Palæodictyoptera (GOLDENBERG) (HANDLIRSCH). Family: Dictyoneuridæ (HANDLIRSCH), hor. 25 (W). Genus Fayolia. (c.f) Fayolia, sp., hor. 2 (R).

Mollusca.

Class Lamellibranchia :---

Genus Carbonicola (M'coy).

C. turgida (BROWN), hor. 25–22–21 (W).

C. ovalis (MARTIN), hor. 25-22-21 (W).

C. aquilina (SOWERBY), hor. 29-22-21-18 (W).

C. (cf.) robusta (SOWERBY), hor. 24 (W).

C. sub-constricta (SOWERBY), hor. 21 (W).

C. acuta (SOWERBY) (var. rhomboidalis) (W. HIND), hor. 20 (W).

C. similis (BROWN), hor. 20 (W).

Carbonicola sp. indet., hor. 17 (W), hor. 10-4 (S).

Genus Anthracomya (SALTER).

A. modiolaris (SOWERBY), hor. 26-25-20 (W).

A. (cf.) modiolaris (SOWERBY), hor. 19 (W).

A. adamsi (SALTER), hor. 22 (W).

A. phillipsi (WILLIAMSON), hor. 19 (W).

A. senex (SALTER), hor. 22 (W).

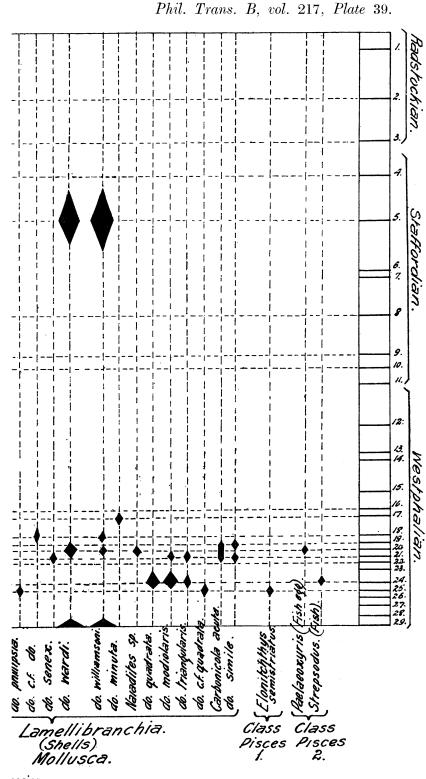
A. wardi (SALTER), hor. 21-20 (W), hor. 4 (S).

A. williamsoni (BROWN), hor. 29 (W).

Anthracomya sp. indet., hor. 17 (W).

BIOLOGICAL

THE ROYAL


PHILOSOPHICAL TRANSACTIONS

Davies.

BIOLOGICAL SCIENCES

		A	7	Li Gi	A	h		N. 77	FF	N? N?	G	0	N	N:	₩º
	tiddle do Tive Feet Sea	ine do. Sean ine do. do. ower Nine Foe oper Yard Se	Tree Coals a so Feet Nine a	Ventre Sean owerdo.de orllwyn do owerdo.do	arod Sean. bereorky do	arod Bider	^o 3. Rhondda d	2. Rhondda Gree Coals	orest-fach	1. Rhondda Rii 1. do. 5ei	ern-ølas a	aranddu d	93. do. do	2. do. Sea	1. Llantwit.
CH	2M. do. 3M1. 3M1.		6. 76.		•	r.	ľ	do. 10.	do.		6.	6.	þ.	m.	
Nor Nor															
S Sourchis So															
Monny Burrows				 	1	1				1	 				
Pestimitatura 3	8		 	 _	 							 		1	1
up of Insecta	 		 	 	 	1 1 1 1						 			
hnl		1 1 1 1	 	 	 	 	 								
da					1 1 1 1	1	 	 	- (1	 	 	 	 	
		 		 	 	r † †	 			 	 	 	 		
Fauolia	Sp.ck						1	 	1 		i i i i - i				
		 	 <u></u> <u></u>	 	1 1 1 1										
															
Larvonicua Ju de Findrides	1			.	 				 		 	•			i 1 1
do oralis		¢- (1 1 1 1		 	 		 	 	 	 	
de Zavilina	 		Ē	i (]] 1 1	 	 	 - ~/ 						
de. robusta.					1 1 1 1	 	 								
do Subconstrict	é.			· · · · · · · · · · · · · · · · · · ·	1	 	 	 	1 1. 1 1	[
do. Kar rhamborda	rdalis.			 	1 1	 .	 	 	 	1	 	1 1 1	 	 	
Anthrocomus SI	50.	i i		 		 	: 1 1		 						
	- - - - - -				: : 	1	 	 	 						
	Í	-		 	 	 	 	 	 						
de. उतेग	; ; [. 	 	1 · } [1	 	1 						
90	4 			 	 			 	 		 		 		
						 .	1 1 1		 						
de Con												1111	 		

pecies.

BIOLOGICAL

THE ROYAL Society

PHILOSOPHICAL TRANSACTIONS

BIOLOGICAL

THE ROYAL SOCIETY

PHILOSOPHICAL TRANSACTIONS

Ö

OF

Mollusca (continued).

Class Lamellibranchia (continued)—

Genus Naiadites (DAWSON).

N. quadrata (SOWERBY), hor. 25 (W).

N. modiolaris (SOWERBY), hor. 25-22 (W).

N. triangularis (SOWERBY), hor. 25–22 (W).

N. (cf.) quadrata (SOWERBY), hor. 26 (W).

Naiadites sp. indet., hor. 21 (W).

Vertebrata (Actinopterygii).

Class Pisces, family Palæoniscidæ. Genus Elonichthys: E. semistriatus (TRAQUAIR), hor. 26 (W) (fish scale).

Order: Crossopterygii. Genus Strepsodus. S. sauroides (BINNEY), hor. 25 (W) (fish scale).

Genus Palæoxyris (Vetacapsula) (cf.) Johnsoni (KIDSTON). Palæoxyris sp., hor. 21 (W).

Notes on the Distribution of Carbonicola. Anthracomya and Naiadites.

Genus Carbonicola.—The different species which were specifically determined are limited in their range to the Westphalian Series and become numerous in two horizons, namely, the Four Feet and Four Feet "Rider" Seams. No fewer than six species occur between these two horizons, which are only separated by about 10 feet of a dark argillaceous shale. The genus is unusually abundant in the Two Feet Nine Seam—in a dark carbonaceous band replete with shells. No fewer than 78 were recorded from a small slab of shale, 12 inches long, 9 inches wide and 6 inches in depth.

Genus Anthracomya.—Few specimens of Anthracomya were found in the Westphalian Series, but they became particularly numerous in the Cefn Glas Seam of the Staffordian Series, where a dark band of shale occurs which is literally covered with their crushed shells. The band which lies directly on top of the coal seam is from 5 to 6 feet in thickness and of a dark carbonaceous character.

Genus Naiadites.—The Genus Naiadites has been found only in the Westphalian Series. In spite of close examination no specimen was found in the Staffordian or Radstockian Series.

General Remarks on the Lamellibranchs.

The three genera Carbonicola, Anthracomya and Naiadites have been found to occur together in the Lower Nine Feet Seam, which is almost the lowest horizon in the whole series. There is no evidence from the material available to indicate that Carbonicola preceded the other two genera. It is strange that no trace of any one of these genera has been found in the Radstockian Series.

VI. DEDUCTIONS.

(See Chart VI at end, showing (a) Assumed land surface and sea floor; (b) Species of Plants of the different horizons; (c) Species of Plants of the different groups;(d) Lithological character of the Coal Measures.)

Changes in the Character of Seams.

Whether the coal seam itself belongs to the "Regional," "Split" or "Local" type, its mode of division varies from place to place. A coal seam may lack any dividing plane at one locality while at another it may be divided into two or more parts. Again, the division within the coal seam may be a clean bedding plane with little, if any, definite parting of clod, shale or rashes. This parting is often found dying away and then the two divisions of the coal seam coalesce forming a complete seam. Also, the bedding plane just referred to may form a parting by the gradual "wedging" in of clod, rashes, shale or sandstone. These dirt partings vary in thickness in small distances.

The process of thickening sometimes progresses so far that the seam is finally divided and in this manner becomes what has been termed the "Split" type of seam. How often the process of the "splitting" of an individual seam may occur is not known. The number of seams encountered in shaft-sections between any two known horizons certainly varies from place to place. This is due partly to the sub-division of the seams and partly to the incoming of "Rider" Seams.

The "Local" type of seam is, no doubt, a "Rider" seam, which thickens locally until it becomes of workable thickness. Only three such workable local seams can be traced with certainty, namely, the Cefn Glas Seam, Three Coal Seams (A), and the Lower Gorllwyn Seam, and as these seams are quite local, they naturally do not appear in many of the shaft-sections.

Each individual coal seam varies in the number of its coal divisions and also in the nature of the division itself. The greatest possible care must therefore be taken not to be misled when attempting to correlate the coal seams. Further, the strata intervening between the seams also vary in thickness, and the roof that immediately overlies a coal seam may change. Each individual stratum dovetails out gently or abruptly, the result being that a seam at one locality is overlaid by a roof of clod, at another by shale and at another by sandstone. The writer has found this to occur over the well-known seams and within a limited area.

Owing to changes in the character of the strata between the seams and to the dovetailing of the strata that form the roof, it is easy to be misled when attempting to correlate the various seams. Therefore, owing to these difficulties in correlating the seams, the writer has assigned a definite number to each individual horizon, in order to make the stratigraphical position of the seam as clear as possible and also to facilitate comparison.

It is noteworthy that however much the seam itself or the overlying strata may

change, the flooring or underclay beneath the seam maintains its lithological character with remarkable constancy. Not a single instance is known of any change in the character of the floor. Moreover, although drifted fragments of stigmarian roots occur now and again in shales overlying the seams, not a single example of drifted plants has been observed in the underclay. Stigmarian roots and rootlets are often, but not always, present in abundance, but no portions of any drifted plants. This confirms the view previously held by the writer, that the growth *in situ* theory is the only one that fits with the overwhelming evidence in its favour.

If the *in situ* hypothesis, or formation on the spot, is accepted, then it becomes clear that each seam which is "Regional," without any "Split" seam branching from it, must, after its formation, have been entirely submerged, prior to the formation of a subsequent overlying seam. Again the "Split" type of seam furnishes an instance of local subsidence having occurred, a portion of the vegetation that originally formed a land-surface becoming submerged. After the infilling of the submerged area, a second growth occurs on the new land-surface and this re-unites itself with that portion of the vegetable land-surface that remained stationary and formed the parent coal seam.

The duration of time during which the "Split" type of coal seam is forming after dividing itself from the "Parent" coal seam, equals the time of formation of the "Parent" seam where it has not divided in itself. The Nine Feet is known over a wide area, whereas the Lower Nine Feet Seam is known only in a limited area and is the lowest division of the three coals that constitute the Nine Feet Seam in its normal condition. In this case we have a submergence of a portion of the land-surface with the vegetation forming the lower division of the Three Coals under water, while the unsubmerged still remains a vegetable land-surface and represents the Nine Feet Seam when complete. Sediments are laid down in due course over the submerged vegetation followed by the infilling of the depressed area. A new land-surface follows, which is again clothed with a vegetation uniting itself with the continuous vegetation of the unsubmerged land-surface which forms the complete Nine Feet Seam.

In other words the time taken to form the Nine Feet Seam (where it is found with its three coals as one complete seam) equals the time taken to form the Lower Nine Feet Seam *plus* the time of infilling the depressed area with sediments to form a new land surface, *plus* also the time taken to form the next seam, which consists of the middle and upper portion of the Nine Feet Seam itself. It is known that between the lower and middle divisions the "wedge" of strata comes in. The middle and upper divisions of the divided seam are about twice the thickness of the lower division of the seam, and it is reasonable to infer that the lower division of the Nine Feet Seam represents a shorter period of time in formation than do the middle and upper divisions.

As further examples may be cited the Four Feet Seam with its "Rider," namely, the Four Feet Rider Seam and also the Two Feet Nine Seam with its "Rider," namely,

VOL. CCXVII.-B.

the Three Coals Seam (B). The Four Feet Seam and the Two Feet Nine Seam are of the "Regional" type and are known to persist over a wide area, whereas the upper divisions of the Four Feet Seam and the Two Feet Nine Seam, namely, the Four Feet "Rider" Seam and the Three Coals Seam (B) are known only in a limited area. Each of these two "Rider" Seams dies out locally.

The "Local" type of coal seams could only have been formed here and there on plots of emerged land-surfaces, such as may have appeared from time to time. The "Local" seams are always thin, and the inference is that not only was the land-surface of limited extent, but the duration of time of growth was also limited.

Lithological Character of the Strata.

Lithologically the Upper Pennant or Radstockian Series have been found to consist of 90 per cent. sandstone and 10 per cent. shale and underclay. The same figures hold good for the Staffordian or Lower Pennant Series. The Westphalian or White Ash Series shows a preponderance of shales over the sandstone and fireclay added together, the shales making up about 80 per cent. the thickness of the whole group.

Considering the strata in ascending order, shales dominate from the lowest coal seam, the Gellideg, up to the Cock Shot Rock (a hard siliceous sandstone) above the Gorllwyn Seam. Above the Cock Shot Rock shales continue to dominate in the strata between the seams until the No. 3 Rhondda Seam is reached at the base of the Staffordian Series.

Afterwards sandstone predominates overwhelmingly up to No. 1 Llantwit Seam. A thick band of shale overlies the sandstone that follows immediately above the No. 1 Llantwit Seam, thus showing the shales again recur at the highest point of the Coal Measure sequence.

Briefly stated, the first *episode* of sediments forming shale exists from the base of the Coal Measures until the Gorllwyn Seam is reached, thus forming 600 feet or more of strata. A second brief *episode* of sandstone deposits forms a persistent band of light yellow siliceous sandstone, which is regional in character, and this band extends over a wide area, the thickness of the sandstone strata being about 34 feet. A third *episode* of sediments forming shale afterwards follows until the No. 3 Rhondda Seam is reached. The thickness of strata in this episode is about 600 feet.

A fourth *episode* of sediments forming sandstone occurs until the No. 1 Llantwit Seam is reached, the thickness of strata here being 2,075 feet. A fifth *episode* of sediments forming shale and of a very brief character occurs at the very top of the Coal Measures, the thickness of strata being about 15 feet.

Ecology of Plants.

Taking the evidence of the whole 29 horizons examined, it was found that not only did certain classes dominate over others, but also that a certain genus dominated in each individual class of plants. The other genera decreased in number on each horizon in each of the four alphabetic groups taken to record the plants. It is remarkable how

few were the instances when the rate of decrease in number of the different genera within a class failed to behave in the manner described.

The best test for proving the similarity of the plants at three widely different points on the same seam was made on the No. 2 Llantwit Seam. As already recorded (in Part I), the seam was examined at three different localities, namely, Trefyrig (near Tonyrefail), Graiglas (near Gilfach Goch) and Glynogwr. Although the shales themselves differed in character at each of the localities mentioned, the plants were found more or less constant, whether the aspect of the classes themselves was considered or the different genera within each individual class.

The distance between the two farthest points mentioned, namely, Trefyrig and Glynogwr, was five miles. Whether this constancy holds good in the behaviour of the flora over even greater distances is not known; no test has been made to prove the constancy of the dominance of the plants of a class over an extensive area.

Another interesting feature comes to light. It was found that whenever the plants belonging to the class Lycopodiales assumed dominance over the other classes, without any exception the Filicales and Pteridosperms became few in number among the other classes. Conversely, the Lycopodiales became few in number whenever the Filicales and Pteridosperms became dominant. On the other hand, the Equisetales and Cordaitales seemed to maintain a numerical constancy, however much the other classes of plants reacted upon each other.

When a certain class assumed a dominance it was found that various parts of the plants to which separate generic names have been applied were also abundant. For instance, if the Equisetales dominated the other classes there would be an abundance of Calamites (stems, branch, foliage), Calamite cones (organs of reproduction) and Myrophyllites or Pinnularia (the roots).

Again, when the class Lycopodiales was found dominating there was abundant evidence of the Lepidodendron (stems) with their twigs and foliage attached, and even the cones of Lepidostrobus in organic union with the terminal end of the twigs. If the Filicales and Pteridosperms were found dominating, then it was found that only certain genera asserted themselves in great numbers. For instance, Neuropteris, generally speaking, seems to be the strongest representative of this class nearly throughout. If any fern or fernlike plants were present at all, Neuropteris would always be well represented, but the genera Mariopteris, Pecopteris, Sphenopteris and Alethopteris might be well represented or absent altogether on certain horizons.

Whenever the seeds of the Trigonocarpus occur in great number Alethopteris is always present in abundance. The association of Trigonocarpus with Alethopteris has been observed by other workers. Strange to say, although a great number of seeds have been seen—and sometimes as many as six or eight examples have been observed on the surface of a single slab of shale—with the fronds of Alethopteris lying close to the seeds themselves, yet there is not a single instance of Trigonocarpus occurring in organic union with the fronds of Alethopteris.

When plants of the class Cordaitales showed themselves to be numerous or dominating, the leaves of Cordaites and the ovulate shoots of Cordaianthus and the seed Samaropsis were found to be common. It may also be mentioned that the Lamellibranchia were always found in great number on horizons where the Lycopodiales were found numerous or rampant. The shales on these horizons are invariably dark and carbonaceous in character. Moreover, although dark and even black shales were a common feature on certain other horizons, with the plants of the class Lycopodiales few in number and with the other different classes dominating the Lycopodiales, it was then found that the shells, if present at all, were very rare.

The probable causes that contributed to the alteration in the balance of distribution of the different classes of plants may now be considered. It is a reasonable inference that if the physical conditions affecting growth remained unchanged at any spot, the balance of the different classes of plants would not be altered at all. If a change in the classes of plants is found, it may therefore be taken to indicate a change in the physical conditions. One of the most probable of such changes would be a change in the relative height of land-surface above sea-level. The evidence of the different horizons as to whether the relative height of land-surface above sea-level is a factor in the causation of changed growth of different classes of plants will therefore be examined.

It is conceded by many authorites that plants of the class Lycopodiales were suited for *wet ground* or *marshy conditions*, and that plants of the class Equisetales would flourish in *damp places*, and that plants of the class Cordaitales were probably suited more or less for *dry conditions*, and that the class Filicales and Pteridosperms were suited best for *dry land-surfaces*.

Very little is known of the condition of growth of the Sphenophyllales, except that the slender plant "climbed" on the larger stems of plants of other classes. The present investigation shows that the Sphenophyllales were hardly ever present in the shales when plants of the class Lycopodiales were dominant. On the other hand, they were found in good number when fern and fernlike plants were numerous.

If the association of the different classes has any significance, this would seem to indicate that the Sphenophyllales were a class of plants adapted for dry-land conditions. Again, if the probable conditions of growth of the different classes of plants were as stated, we can regard the Lycopodiales as a *wet flora*, and the ferns and fernlike plants as representing the *dry flora*, the Equisetales as *damp flora*, and Cordaitales with greater power of adaptation as suited for both damp and dry conditions of growth.

The fact, as already stated, was that the two classes Lycopodiales and Filicales and Pteridosperms were found to re-act one upon the other, that is, the one class being almost absent when the other classes became dominant, and also the second fact that the Equisetales and Cordaitales were not influenced in a marked manner, whichever of the two classes, namely, the Filicales and Pteridosperms or the Lycopodiales were dominant.

134

The two classes Equisetales and Cordaitales seem to hold a position for growth between the two extremes of *wet* and *dry*, represented by the Lycopodiales on the one hand and the Filicales and Pteridosperms on the other. Consequently, whatever alteration occurred in the relative height of the land-surface above the water-level, the Equisetales and Cordaitales always managed to maintain their existence in considerable numbers. The type of land-surface that prevailed during the deposition of the different sediments that form the strata between the twenty-nine coal seams must have varied considerably from time to time to cause the variations in the flora.

When the Lycopodiales—wet flora—dominated, we may reasonably assume that swampy or marshy conditions prevailed. Again, if elevated land prevailed we should get a different flora suited to drier conditions, the result being that dry flora would, in this circumstance, dominate the wet flora.

It is well to be guarded here, for even though elevated and dry conditions prevailed over the mainland area, the wet flora would still fringe the rivers and mouths of the deltas, and would always be in the most favoured position for transport of the plants to the delta, while the dry flora would be in a less favoured position, being more remote from the banks of rivers and the margins of the deltas. Notwithstanding these odds against the entombment of the dry flora they have easily defeated the wet flora in their dominance in the 29 horizons. This shows quite clearly that the idea that the coal age was a period of swampy conditions is erroneous. If the condition that held good in the past is true, why is it that the dry flora, as an extreme on the one hand, is far more numerous than is the wet flora on the other hand ?

A cycle of elevated land-surfaces evidently did exist—produced by an uplift too rapid for erosion to keep pace with it. If the rate of erosion of land-surface kept pace with the rate of uplift, then elevated land-surfaces would become an impossibility. On the other hand, a submerging land-surface produced a cycle of swampy conditions which occurred now and again, showing that earth movements were occurring then as now.

As there was no fixed relative elevation of sea-level to land surface throughout, there was no fixed and even distribution of plants of different classes as a result. In a brief cycle of depression it would show the Lycopodiales in the ascendant, while an opposite cycle of upraised land producing elevations would cause the ferns and fernlike plants to become dominant, whereas physical conditions between the swampy conditions and elevated land would produce a dominance of the two classes Equisetales and Cordaitales. Intermediary or normal flora prevailed between the two extremes, namely, the Lycopodiales and the Filicales and Pteridosperms.

If the premises stated above are justified, an approximately even balance of the four classes of plants, the Equisetales, the Lycopodiales, the Filicales and Pteridosperms and the Cordaitales, would indicate swampy conditions limited in area, with a larger area of damp and slightly elevated land surface, and a still larger area of more elevated land surface. Such conditions would enable the Filicales and Pteridosperms, the least

favoured from the standpoint of transportation, to hold their own in balance of distribution among the other classes.

It will be well to show in tabular form the percentage of the different classes of plants for each individual horizon, and to indicate the probable physical aspect of the land surfaces from which the plants were derived.

Horizon No.	Name of Seam.	Percentage Compos	ition of Flora.	Probable Physical Conditions.
29	Gellideg	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A large extent of dry and uplands. Lycopodiales weak, indicating very limited area of swampy conditions.
28	Five Feet	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms . Cordaitales	$\begin{array}{cccc} 30 \cdot 34 & \text{per cent.} \\ \text{Nil.} \\ 0 \cdot 21 & ,, \\ 24 \cdot 46 & ,, \\ 43 \cdot 83 & ,, \end{array}$	Conditions more or less similar to those of the previous stage —but the elevation perhaps not so great as indicated by the smaller percentage of Fili- cales and Pteridosperms.
27	Middle Yard	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Conditions closely allied to those of the Five Feet Seam. The Lycopodiales are rare and dry. Land vegetation is fairly strong in evidence.
26	Upper Yard (or Bute)	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	31.30 per cent. Nil. 10.60 ,, 40.60 ,, 17.50 ,,	A slight increase of dry land conditions. The fern and fern- like plants increase, accom- panied by more swampy areas.
25	Lower Nine Feet	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A marked decrease of Filicales and Pteridosperms—and an increasing number of Lycopo- diales suggest less elevated land and an increase of swampy areas.
24	Nine Feet	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	49.74 per cent. Nil. 3.33 ,, 27.55 ,, 17.03 ,,	Swampy areas less prevalent. Low altitudes of land surface favouring the damp flora, such as the Lycopodiales and prob- ably the Cordaitales.

HORIZON PERCENTAGES AND PHYSICAL CONDITIONS.

HORIZON PERCENTAGES AND PHYSICAL CONDITIONS (continued).

Horizon No.	Name of Seam.	Percentage Compo	sition of Flora.	Probable Physical Conditions.
23	Six Feet	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	39·34 per cent. Nil. 0·44 ,, 43·77 ,, 14·15 ,,	A period of elevation of land surface. The fern and fern- like plants dominating the other classes of plants. Swampy areas restricted.
22	Four Feet	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Lowland conditions with an in- creasing swampy area. The damp and wet Flora easily preponderate over the dry Flora due to a depression of land surface.
21	Four Feet "Rider"	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Lowland with damp conditions for growth still prevailing with an increased area of marshy conditions. Lycopodiales gain- ing in number.
20	Two Feet Nine .	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	$5 \cdot 96$ per cent. Nil. $66 \cdot 38$,, $1 \cdot 70$,, $25 \cdot 13$,,	The inference here is that there was an extensive lowland sur- face with hugh marshes. The uplands were small in area, therefore the fern and fern- like plants were feeble, as the evidence shows.
19	Three Coals (B)	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Swampy conditions, becoming less in extent here. Lowland with damp places increasing and also an increase here and there in the amount of elevated land.
18	Lower Gorllwyn	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	$\begin{array}{cccc} 1 \cdot 47 \ \text{per cent.} \\ \text{Nil.} \\ 48 \cdot 51 & ,, \\ 5 \cdot 60 & ,, \\ 44 \cdot 42 & ,, \end{array}$	Dry and lowland conditions in wide areas. Also an extensive marshy land surface, as the Lycopodiales are strong in evidence.
17	Gorllwyn	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Damp and lowland surface with very few swamps and also with but slight elevations of surface. It will be observed the two extreme Floras (Wet and Dry Flora), namely, the Lycopodiales and Filicales and Pteridosperms are but feebly in evidence.

TRANSACTIONS SOCIETY SCIENCES

BIOLOGICAL SCIENCES

 PHILOSOPHICAL
 THE ROYAL

 TRANSACTIONS
 SOCIETY

137

Horizon Name of Seam. Percentage Composition of Flora. Probable Physical Conditions. No. Equisetales . . . 16Lower Pentre $47 \cdot 18$ per cent. Elevated land surfaces are now Sphenophyllales . 9.33showing themselves with large ,, stretches of lowland and with Lycopodiales $5 \cdot 14$. . ,, Filicales and Ptera considerable area of damp idosperms 37.05conditions. • • ,, Cordaitales . . . 1.30,, 15Lowland surfaces with dry and Pentre Equisetales . . . $25 \cdot 99$ per cent. Sphenophyllales . 6.49damp areas and large bordering ,, marshes. The elevated sur-Lycopodiales 38.79. . ,, faces could not have been Filicales and Pter-9.97extensive because the fern and idosperms ,, fernlike plants are weak in Cordaitales 18.68. . . ,, evidence. 14 $82 \cdot 41$ per cent. Wide and extensive lowland, with Abergorky Equisetales . . 0.40Sphenophyllales the major portion of its surface ,, of a damp nature. Very few Lycopodiales 0.21. . ,, Filicales and Ptermarshes and also very few idosperms $5 \cdot 13$ elevations of surface. . . ,, Cordaitales 9.60. . ,, 13 $83 \cdot 70$ per cent. The surface condition at this Hafod . . . Equisetales . . . stage closely resembled the Sphenophyllales . 0.03preceding one. There is evi- $4 \cdot 63$ Lycopodiales ,, dence of a slight increase of Filicales and Pterswampy areas. The Lycoidosperms 8.83. . ,, podiales are now increasing in Cordaitales 2.78. . . ,, number. A period of upraised land surface 12Hafod "Rider" $44 \cdot 42$ per cent. . . . Equisetales Sphenophyllales 0.24forming elevations to a marked ,, degree. The lowland is damp Lycopodiales 11.70. . ,, in wide areas and bordered here Filicales and Pterand there by marshes. idosperms 40.68. . ,, Cordaitales $2 \cdot 96$,, Elevated land surface still per-11 No. 3 Rhondda Equisetales $37 \cdot 19$ per cent. sisting with damp and dry 1.09Sphenophyllales ,, lowlands. The areas on Lycopodiales 0.25. . ,, swampy areas must have been Filicales and Pterlimited, hence the Lycopodiales idosperms $42 \cdot 13$ • • • ,, Cordaitales . . . 20.10being rarely in evidence. ,, Elevation of land surface occur-10 Three Coals (A) 40.42 per cent. Equisetales . . . ring to a marked degree. The Sphenophyllales . 0.57,, fern and fernlike plants are Lycopodiales 1.14,, now rampant with a small area Filicales and Pterof swampy conditions. $51 \cdot 40$ The idosperms . . ,, Lycopodiales are very feebly in 6.47Cordaitales . . . ,, evidence.

HORIZON PERCENTAGES AND PHYSICAL CONDITIONS (continued).

HORIZON PERCENTAGES AND PHYSICAL CONDITIONS (continued).

Horizon No.	Name of Seam.	Percentage Compo	sition of Flora.	Probable Physical Conditions.
9	No. 2 Rhondda .	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	$\begin{array}{cccc} 41 \cdot 56 & \text{per cent.} \\ 6 \cdot 64 & ,, \\ 1 \cdot 23 & ,, \\ 35 \cdot 89 & ,, \\ 14 \cdot 68 & ,, \end{array}$	The height of land surface slightly decreasing as compared with the preceding conditions of the last horizon. Marshy condi- tions more or less similar in both cases.
8	Fforest Fach	Equisetales Sphenophyllales Lycopodiales Filicales and Pter- idosperms Cordaitales	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A recurrence of high land surface causing the fern and fernlike plants to flourish in a luxurian manner, only very restricted areas being of a marshy nature as the Lycopodiales are now almost absent.
7	No. 1 Rhondda .	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	The upraised land surface is becoming less here—the dry and damp places in the lowland almost balance, as the Equi- setales and Cordaitales show in evidence. Marshy areas stil- limited.
6	No. 1 Rhondda, " Rider "	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A period of lowland surface with damp conditions over an ex tensive area. Swamps very restricted and the elevation also found only here and there.
5	Cefn Glas	Equisetales Sphenophyllales Lycopodiales Filicales and Pter- idosperms Cordaitales	26.50 per cent. Nil. 37.00 ,, 11.90 ,, 24.60 ,,	Swampy conditions prevail, with lowland of dry and damp con ditions almost evenly balanced —with but a small number of elevations of surface, as the fern and fernlike plants are now scarce.
4	Darran Ddu .	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A marked period of extreme elevation of land surface. The fern and fernlike plants are at their zenith. Swampy con- dition comparatively small in area. Lycopodiales conse- quently weak in evidence.
3	No. 3 Llantwit .	Equisetales Sphenophyllales . Lycopodiales Filicales and Pter- idosperms Cordaitales	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Here again is shown a con- tinuance of the physical con- ditions that prevailed in the preceding horizon. The in- creased number of Lycopodiales here show more marshy condi- tions.

PHILOSOPHICAL THE ROYAL BIOLOGICAL TRANSACTIONS SOCIETY SCIENCES

PHILOSOPHICAL THE ROYAL BIOLOGICAL TRANSACTIONS SOCIETY SCIENCES $\mathbf{139}$

Horizon No.	Name of Seam.	Percentage Composition of Flora.	Probable Physical Conditions.
2	No. 2 Llantwit	Equisetales $36 \cdot 42$ per cent. Sphenophyllales . $4 \cdot 98$,, Lycopodiales $1 \cdot 60$,, Filicales and Pter- idosperms . $56 \cdot 19$,, Cordaitales $0 \cdot 81$,,	High elevations of land surface still prevailing with lowland of a damp character. The marshes are again very re- stricted in area.
1	No. 1 Llantwit	Equisetales 24.05 per cent. Sphenophyllales . 0.18 ,, Lycopodiales 12.89 ,, Filicales and Pter- idosperms 62.09 ,, Cordaitales 0.79 ,,	A continuance of upraised land surface showing the fern and fernlike plants flourishing in luxuriance. An increased area of marshes as the Lyco- podiales are increasing in their number.

HORIZON PERCENTAGES AND PHYSICAL CONDITIONS (continued).

(See (a) Chart VI.)

PHILOSOPHICAL THE ROYAL D BIOLOGICAL TRANSACTIONS SOCIETY SCIENCES

PHILOSOPHICAL THE ROYAL BIOLOGICAL TRANSACTIONS SOCIETY SCIENCES

TABLE C, showing Series, Horizons and Dominant Forms.

Radstockian Series East Glamorgan Coalfield.

Llantwit or Upper Pennant Series.

Horizon	Mean Thickness of	Mean Thickness of	Thick	ness in to Tot	Thickness in Feet and relative Percentage to Total Thickness of Strata.	l relativ tess of £	e Percen Strata.	tage	Dominant Class and Terms Per Cent.	s and ent.	Dominant Ge Ter	Dominant Genus in each Class and Terms Per Cent.	and
	Seam.	Strata to Seam above.	Shale.		Sandstone.	tone.	Fireclay.	lay.	Class.	Per Cent.	Class.	Genus.	Per Cent.
No. I	2 feet 10 inches	100 feet to surface	Feet.	Per cent. 30	Feet 50	Per cent. 50	Feet. 20	Per cent. 20	Filicales and Pterido- sperms	62.08	Equisetales Sphenophyllales Lycopodiales and Filicales and Pteridosperms Cordaitales	Asterophyllites Sphenophyllum Lepidodendron Neuropteris Cordaite Leaves	46.13 100.00 70.20 70.09 99.12
II N U 2	4 feet 6 inches	300 feet	.	<i>c</i> o	285	95	ల	02	Filicales and Pterido- sperms	56.19	Equisetales Sphenophyllales Lycopodiales Filicales and Pteridosperms Cordaitales	Asterophyllites . Sphenophyllum Lepidophyllum Neuropteris Cordaite Leaves	66 - 08 70 - 41 70 - 41 49 - 04 89 - 16
No. III .	3 feet	270 feet	∞	en	257	95	<u>о</u> г	es es	Filicales and Pterido- sperms	66.25	Equisetales Sphenophyllales Lycopodiales and Filicales and Pteridosperms Cordaitales	Asterophyllites Sphenophyllum Sigillaria Neuropteris Cordaite Leaves	59.26 100.00 48.37 57.15 98.16
Coal Seams, 3	Total Thick- ness of Coal Seams, 10 feet 4 inches	Total Strata, 670 feet	Total, 47 feet	2	Total, 592 feet	8.68	Total, 31 feet	3.20	Note the dominance of Filicales and Pteridosperms (Dry Flora)				

THE COAL MEASURES IN EAST GLAMORGANSHIRE.

141

TRANSACTIONS SOCIETY SCIENCES

Table C (continued).

142

Staffordian Series—East Glamorgan Coalfield.

Lower Pennant Series.

and	Per Cent.	43.16 44.03 44.03 67.07 99.05	88 · 30 88 · 30 82 · 01 99 · 39	42.56 1 speci- men only 37.00 86.07 100.00	54 °77 100 • 00 73 • 56 99 • 38
Dominant Genus in each Class and Terms Per Cent.	Genus.	Asterophyllites Sphenophyllum Lepidophyllum Neuropteris	Asterophyllites Nil Lepidodendron Neuropteris Cordaite Leaves	Asterophyllites Sphenophyllum Lepidodendron Neuropteris Cordaite Leaves	Asterophyllites Sphenophyllum Sigillaria Neuropteris Cordaite Leaves
Dominant Ge Ter	Class.	Equisetales Sphenophyllales Lycopodiales . Filicales and Pteridosperms Cordaitales .	Equisetales Sphenophyllales Lycopodiales Filicales and Pteridosperms Cordaitales	Equisetales	Equisetales Equisetales Sphenophyllales Lycorpodiales and Filicales and Pteridosperms Cordaitales .
ss and ent.	Per Cent.	64 · 09	37.00	88.69	36.68
Dominant Class and Terms Per Cent.	Class.	Filicales and Pterido- sperms	Lycopodiales	Equisetales	Cordaitales
tage	lay.	Per cent. 4·4	1.85	1.66	14.00
e Percer Strata.	Fireclay.	Feet. 8	οı	νĊ	m
l relativ ness of S	tone.	Per cent. 92.3	00.70	96.68	62.00
less in Feet and relative Pero to Total Thickness of Strata.	Sandstone.	Feet. 166	262	290	13
Thickness in Feet and relative Percentage to Total Thickness of Strata.	le.	Per cent. 3.3	1.15	1-66	24.0
Thick	Shale.	Feet. 6	en	τĊ	ΣQ
Mean Thickness of	Seam above.	180 feet	270 feet	300 feet	21 feet
Mean Thickness of	Seam.	4 feet 3 inches	4 feet 1 inch	2 feet	2 feet 7 inches
Horizon		No. IV	No. V	. IV .0N	No. VII

THE ROYAL SOCIETY	
PHILOSOPHICAL TRANSACTIONS	

BIOLOGICAL SCIENCES

44-33 700-00 73-75 76-34 96-60	37 - 55 37 - 55 59 - 20 59 - 20 94 - 80	43 · 64 100 · 00 65 · 56 61 · 37 99 · 39	34 - 81 100 - 00 64 - 28 32 - 36 97 - 14	
Asterophyllites Sphenophyllum Sigillaria	Asterophyllites Sphenophyllum Lepidodendron Neuropteris	Asterophyllites Sphenophyllum Lepidodendron Neuropteris Cordaite Leaves	Asterophyllites Sphenophyllum Sigillaria Neuropteris Cordaite Leaves	
Equisetales Sphenophyllales Lycopodiales Filicales and Pteridosperms Cordaitales	Equisetales Sphenophyllales Lycopodiales and Filicales and Pteridosperms Cordaitales	Equisetales Sphenophyllales Lycopodiales and Filicales and Pteridosperms Cordaitales	Equisetales Sphenophyllales Lycopodiales . Filicales and Pteridosperms Cordaitales	
51.35	41.56	51.40	40.43	
Filicales and Pterido- sperms	Equisetales .	Filicales and Pterido- sperms	Filicales and Pterido- sperms	
1.80	5.33	5.34	2.00	Aver- age per cent. 2.74
4	4	-41	0	Total, 38 feet
95.50	86.67	68.00	93.00	Aver- age per cent. 92.72
215	65	51	222	Total, 1,284 feet
2.70	8.00	26.66	5.00	Aver- age per cent. 4·54
ن	9	20	12	Total, 63 feet
225 feet	75 feet	75 feet	239 feet	Total, 1,385 feet
No. VIII . 2 feet 10 inches	4 feet 3 inches	2 feet 8 inches	2.feet 4 inches	Total, 25 feet
No. VIII .	No. IX	No. X .	No. XI	Coal Seams, 8

THE COAL MEASURES IN EAST GLAMORGANSHIRE.

PHILOSOPHICAL THE ROYAL BIOLOGICAL TRANSACTIONS SOCIETY SCIENCES

Table C (continued).

144

Westphalian or White Ash Series. East Glamorgan Coalfield.

	and	Per Cent.	59-41 59-41 50-83 45-30 100-00	72.20 4 speci- mens only 61.58 13.76 96.83	63.25 100.00 only 9 speci- mens in class. 30.75 96.00	52.98 52.98 53.05 15.60 98.94
	Dominant Genus in each Class and Terms Per Cent.	Genus.	Asterophyllites Sphenophyllum Sigillaria Neuropteris Cordaite Leaves	Asterophyllites Sphenophyllum Lepidodendron Neuropteris Cordaite Leaves	Asterophyllites Sphenophyllum Stigmaria Neuropteris Cordaite Leaves	Asterophyllites Sphenophyllum Lepidodendron Mariopteris Cordaite Leaves
	Dominant G Ter	Class.	Equisetales Sphenophyllales Lycopodiales . Filicales and Pteridosperms Cordaitales	Equisetales Sphenophyllales Lycopodiales . Filicales and Pteridosperms Cordaitales	Equisetales	Equisetales Sphenophyllales Lycopodiales Filicales and Pteridosperms Cordaitales
	ss and ent.	Per Cent.	44 • 42	83.73	84 · 29	38.79
)	Dominant Class and Terms Per Cent.	Class.	Equisetales .	Equisetales	Equisetales .	Lycopodiales
	tage	lay.	Per cent. 2.5	20.0	() ()	2.2
	e Percen trata.	Fireclay.	Feet. 4	9	Q	œ
	relative ess of S	one.	$\begin{array}{c} \operatorname{Per} \\ \text{cent.} \\ \tilde{\mathcal{S}} \cdot \theta \end{array}$		2 2 2	28.8
	Thickness in Feet and relative Percentage to Total Thickness of Strata.	Sandstone.	Feet. 9		o O	33
	ness in I to Tota	le.	Per cent. 92.5	80.0	2.16	64.0
	Thick	Shale.	Feet. 164	ू द्रा स	167.5	72
	Mean Thickness of Structo 40	Seam above.	177 feet	30 feet	183 feet	112 feet
	Mean Thickness of	Seam.	1 foot 8 inches	2 feet 9 inches	2 feet 1 inch	3 feet 1 inch
	Horizon.		No. XII	No. XIII .	No. XIV .	No. XV

Downloaded from rstb.royalsocietypublishing.org

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

BIOL	
HE ROYAL DCIETY	
IOSOPHICAL T NSACTIONS CI OF S	
PHILOS TRANS/	

1.1		
=		
5		
$\mathbf{\nabla}$	S	
ī.	н.	
×	$\mathbf{\underline{\nabla}}$	
Q	Z	
	ш.	

PHILOSOPHICAL THE ROYAL BIOLOGICAL SOCIETY SCIENCES

37 · 08 37 · 08 30 · 30 48 · 65 100 · 00	61.25 Only 7 species. 44.18 48.15 Only 25 speci- mens in Class.	$73 \cdot 27$ $65 \cdot 43$ $1 \cdot 15$ $57 \cdot 26$	62.99 2 speci- mens 61.20 74.81 98.24	92.85 69.20 79.17 98.88	58.92 25 speci- mens only. 56.68 12 · 15 19 speci- mens onty.
Calamites Sphenophyllum Sigillaría Neuropteris Cordaite Leaves	Asterophyllites Sphenophyllum Sigillaria Neuropteris Cordaite Leaves	Asterophyllites (Absent) Lepidodendron Mariopteris (very rare) Cordaite Leaves	Asterophyllites Sphenophyllum Sigillaria Neuropteris .	Calamites	Asterophyllites Sphenophyllum Lepidodendron Neuropteris
Equisetales	Equisetales Sphenophyllales Lycopodiales Filicales and Pteridosperms Cordaitales	Equisetales Sphenophyllales Lycopodiales Filicales and Pteridosperms Cordaitales	Equisetales Sphenophyllales Lycopodiales . Filicales and Pteridosperms Cordaitales	Equisetales Sphenophyllales . Lycopodiales . Filicales and Pteridosperms Cordaitales	Equisetales Sphenophyllales Lycopodiales Filicales and Pteridosperms Cordaitales
47 · 18	94.03	48.51	60.12	69·99	62.03
14.3 Equisetales ,	Equisetales	Lycopodiales	Equisetales .	Lycopodiales	Equisetales
14.3	15.0	5.0	0.9	20.0	13.5
ero	36	10	က	ભ	4
14.3	20.0	11.0	37.0		
en en	34	12	21		1
Ŧ · I L	65.0	84.0	57.0	80.0	86.5
Eč	112	87	32	x	<u></u>
21 feet	172 feet	104 feet	160 feet	170 feet	37 feet
2 feet 4 inches	2 feet 1 inch	1 foot 3 inches	3 feet 7 inches	3 feet 5 inches	1 foot 8 inches
No. XVI	No. XVII	No. XVIII	No. XIX .	No. XX	No. XXI .

THE COAL MEASURES IN EAST GLAMORGANSHIRE.

PHILOSOPHICAL THE ROYAL TRANSACTIONS SOCIETY

BIOLOGICAL

Table C (continued).

146

Westphalian or White Ash Series. East Glamorgan Coalfield.

Thickness in Feature Percenting Dominant Class and Terms Per Cent. Dominant Class and Terms Per Cent. Der Cent. Per Cent. 10 Total Thickness of Strata. Freed, early Free, early Per Class.	-											a a d'article de la circulta de la compañía de la circulta de la circulta de la compañía de la compañía de la c		
Sandstone. Fireclay. Class. Class. Cent. Class. Genus. Feet. 20.0 Bquisetales 68.71 Bquisetales Asterophyllites 20.0 Bquisetales 68.71 Bquisetales Asterophyllites 3 5.0 15 Princales 44.36 Bquisetales Asterophyllites 3 5.0 15 Prendos Prendoserms Cordaitales Asterophyllites 14 13.0 30 26.0 Equisetales Asterophyllites Epidodendron 14 13.0 30 26.0 Equisetales 50.35 Bquisetales Asterophyllites 8 26.67 Bquisetales Asterophyllites Epidodendron 8 26.67 Bquisetales 50.93 Bquisetales Asterophyllites 8 26.67 Bquisetales Asterophyllites Epidodendron 8 26.67 Bquisetales Asterophyllites Epidoendron 8 26.67 Bquisetales Asterophyllites Epidoe			Thickness in to Tota	ness in o Tota	L.	reet and Thickne	relative ss of Stı	e Percen rata.	tage	Dominant Clas Terms Per C	is and ent.	Dominant Ge Ter	enus in each Class ms Per Cent.	and
Feet. Pert. Pert. <th< td=""><td>Seam. Strata to Seam above. Shale.</td><td></td><td>Shale.</td><td>ė</td><td>1</td><td>Sandst</td><td>one.</td><td>Fired</td><td>lay.</td><td>Class.</td><td>Per Cent.</td><td>Class.</td><td>Genus.</td><td>Per Cent</td></th<>	Seam. Strata to Seam above. Shale.		Shale.	ė	1	Sandst	one.	Fired	lay.	Class.	Per Cent.	Class.	Genus.	Per Cent
3 5.0 15 15.0 Flicales and sperms 44.36 Equisetales Asterophylities 14 13.0 26.0 Flicales 14.36 Equisetales Asterophylities 14 13.0 30 26.0 Equisetales 50.93 Equisetales Asterophylities 15 14 13.0 30 26.0 Equisetales 50.93 Equisetales Asterophylites 15 30 26.0 Equisetales 50.93 Equisetales Asterophylites 16 13.0 26.0 Equisetales 50.93 Equisetales Asterophylites 17 - 8 26.67 Equisetales 68.66 Equisetales Equisetales 1 7.2 12.0 13.2 22.0 Flicales Myrophylites Sphenophylites 7.12 12.0 13.2 22.0 Flicales Cordaitales Cordaitales 1 7.2 12.0 13.2 22.0 Flicales Myrophylites Equisetales 1 7.12 12.0 13.2 22.0 Flicales 1 1 1 7.12 12.0 13.2 22.0 Flicales Cordaitales 1 <td>6 feet 5 inches 10 feet 8 80.0</td> <td>I0 feet. 8</td> <td></td> <td>Per cent. 80.0</td> <td></td> <td>Feet.</td> <td>Per cent.</td> <td>Feet.</td> <td>Per cent. $20 \cdot 0$</td> <td>Equisetales</td> <td>68 · 71</td> <td>Equisetales Sphenophyllales Lycopodiales Filicales and Pteridosperms Cordaitales</td> <td>Asterophyllites Sphenophyllum Lepidodendron Neuropteris</td> <td>69 - 88 69 - 88 60 - 93 35 - 53 99 - 34</td>	6 feet 5 inches 10 feet 8 80.0	I0 feet. 8		Per cent. 80.0		Feet.	Per cent.	Feet.	Per cent. $20 \cdot 0$	Equisetales	68 · 71	Equisetales Sphenophyllales Lycopodiales Filicales and Pteridosperms Cordaitales	Asterophyllites Sphenophyllum Lepidodendron Neuropteris	69 - 88 69 - 88 60 - 93 35 - 53 99 - 34
14 13.0 30 26.0 Equisetales 50.93 Equisetales Asterophyllites 8 26.67 Equisetales 60.93 Equisetales Absent) 8 26.67 Equisetales 6.6.68 Equisetales Cordaite Leaves 8 26.67 Equisetales 6.8.66 Equisetales Myrophyllites 8 26.67 Equisetales 6.8.66 Equisetales Myrophyllites 8 26.67 Equisetales 6.8.66 Equisetales Iphenophyllake 8 26.67 Equisetales 6.8.66 Equisetales Iphenophyllake 8 26.67 Equisetales 6.8.66 Equisetales Iphenophyllake 8 26.67 Equisetales 1 Iphenophyllake Iphenophyllake 13.0 13.2 22.0 Filicales 1 Cordaitales 1 22.0 Filicales 1 2 Equisetales 1 13.2 22.0 Filicales 1 1	7 feet 66 feet 48 80.0	48	1	80.0		ŝ	5.0	15	15.0	Filicales and Pterido- sperms	44.36	Equisetales Sphenophyllales Lycopodiales Filicales and Pteridosperms Cordaitales	Asterophyllites (Absent) Lepidodendron Neuropteris	$\frac{91\cdot08}{53\cdot12}\\95\cdot36\\99\cdot50$
 B 26.67 Equisetales . 68.66 Equisetales . Myrophyllites . Sphenophyllaues Sphenophyllaues . Evologiales . Evologiales . Lycopodiales . Evologendaria . Lycopodiales . Cordaite Leaves . Cordaitales	9 feet 6 inches 120 feet 76 61.0	120 feet 76		61.0		14	13.0	о <u>е</u>	26.0	Equisetales .	50.93	Equisetales Sphenophyllales Lycopodiales . Filicales and Pteridosperms Cordaitales	Asterophyllites (Absent) Lepidodendron Neuropteris	$72 \cdot 14$ $71 \cdot 94$ $96 \cdot 97$ $98 \cdot 23$
12.0 13.2 22.0 Filicales and 40.61 Equisetales Calamites	4 feet 6 inches 30 feet 22 73.33	30 feet 22		73.33			1	8	26.67			Equisetales Sphenophyllales Lycopodiales . Filicales and Pteridosperms Cordaitales	Myrophyllites . Sphenophyllum Lepidodendron Neuropteris Cordaite Leaves	$\begin{array}{c} 54 \cdot 11 \\ 54 \cdot 00 \\ 85 \cdot 62 \\ 47 \cdot 65 \\ 98 \cdot 62 \\ 98 \cdot 62 \end{array}$
	XXVI <u>4 feet 9 inches</u> 90 feet 39.6 66.0	90 feet 39.6	1	0.99	1	7.2	12.0	13.2	22.0	Filicales and Pterido- sperms	40.61	Equisetales . Sphenophyllales . Lycopodiales . Filicales and Pteridosperms Cordaitales .	Calamites (Absent) (Absent) Lepidodendron Neuropteris Cordaite Leaves	59.61 88.38 49.94 99.64

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

BIOLOGICAL

TRANSACTIONS CONTENT

SOCIETY

- OF -

50.35 mens mens only. 29 speci- mens only. 21.46 21.46 100.00	55.16 4 speci- mens only. 99.85	52.96 4 spect- mens only. 52.22 66.85 99.88		
Asterophyllites Sphenophyllum Stigmaria Sphenopteris Cordaite Leaves	Calamites	Myrophyllites Sphenophyllum Éepidodendron Neuropteris Cordaite Leaves		11 times. 3 ;; 1 ;; 1 ;;
72.19 Equisetales . Asterophyllites Sphenophyllales Sphenophyllum Lycopodiales . Stigmaria Filicales and Sphenopteris Cordaitales . Cordaite Leaves	Equisetales Sphenophyllales Lycopodiales Filicales and Pteridosperms Cordaitales	Equisetales Sphenophyllales Lycopodiales Filicales and Pteridosperms Cordaitales		Equisetales dominate
22.19	44.35	54.45		minate Jominat Pteridos minate
24.2 Equisetales .	Cordaitales .	Filicales and Pterido- sperms		Equisetales dominate Lycopodiales dominate Filicales and Pteridos Cordaitales dominate
2.77 2.77 2.	20.0	30.0		12.4
œ	10			Total. 162.2
16.2	14.0	10.01		12.3
r.	t-	m		Total. 159.7
0.09	0.99	60.0		75.3
20	4 .	18		Total. 980 · 1
° 33 feet	. 51 feet	30 feet	Total Thickness of Strata.	1,302 feet (434 yards)
No.XXVII 3 feet 6 inches .	5 feet 6 inches	4 feet 6 inches	Total Mean Thickness of 18 Seams.	68 feet 7 inches
IIAXX .0N	No. XXVIII	No. XXIX	Total Horizons.	18
VOL. CCXVIIH		X		

THE COAL MEASURES IN EAST GLAMORGANSHIRE.

147

 BIOLOGICAL

 SCIENCES

TRANSACTIONS SOCIETY SCIENCES SCIENCES

The Radstockian or Upper Pennant-The Staffordian or Lower Pennant and Westphalian or White Ash Series.

148

es Dominant Genus,			3 Cordaite Leaves 3 ,	Asterophyllites8 times.4Sphenophyllales7 appear2Lepidodendron4 times.1Neuropteris81Cordaite Leaves8	8	11Asterophyllites12 times.3Sphenophyllium121Lepidodendron133Neuropters151Cordaite Leaves18	18	 Asterophyllites 23 times. Sphenophyllum 22 , Lepidodendron 18 , Neuropterts 26 , Cordaite Leaves 29 ,, 	29
Number of Times each Class Dominates,		Filicales and Pterido- sperms	1	Filicales and Pteridosperms Equisetales Lycopodiales Cordaitales		Equisetales . Lycopodiales . Filicales and Pteridosperms Cordaitales .		Equisetales .] Filicales and Pteridosperms] Lycopodiales Cordaitales	
Total Plants Re- corded.		48,516		111,666		42,250 229,801		389,983	
Indi- vidual Split Sur- Ex-	amined.	7,214		17,079		42,250		66,543	
Blocks of Shale Ex- amined.		1,557		3,938		13,154		6 · 99 18,649	AT # 1
r, and Total ch case.	Fireclay.	Feet. $\begin{bmatrix} \text{Per} \\ \text{cent.} \\ 3.10 \end{bmatrix}$		38 <i>2.74</i>		162.2 12.4			
Total Thickness in Feet, and relative Percentage to Total Thickness of Strata in each case. Shale. Sandstone. Fired	Per cent. 89.90		4 92.73		159.7 12.3		-7 60.64 5		
l Thickne ive Perce ess of Sti	San	Per Feet.		4·54 1,284				47 2,035	
Total relati Thickn	Shale.	Feet. Cc Cc 7		63		980.1 75.3		,090 • 1 32 •	
Total Thick- ness of Strata.	1	670 ft. or yds.		1,358 ft. or 461 · 66 yds.		1,302 ft. or 434 yds.		$\begin{array}{c} 3,357 \ \text{ft.} & 1,090 \cdot 1 \ 32 \cdot 47 \ 2,035 \cdot 7 \ 60 \cdot 64 \ 231 \cdot 2 \\ \text{or} \\ 1,119 \\ \text{yds.} \end{array}$	
Total Thick- ness of Coal Seams.		10 ft. 4 ins.		25 ft. 0 ins.		68 ft. 7 ins.		103·11 ft.	
No. of Locali- ties.		Q		œ		9		20	
No. of Seams.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		x		18		29	
Series.		Radstockian or Upper Pennant		Staffordian or Lower Pennant		Westphalian or White Ash		Total .	_

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

THE COAL MEASURES IN EAST GLAMORGANSHIRE.

CONCLUSION.

It becomes evident, from the composition of the different floras, that changes occurred in the physical conditions of the land surfaces which prevailed from time to time during the deposition of the various shales that overlie the 29 horizons.

The 4 lowest horizons, the Gellideg, Five Feet, Middle Yard and Upper Yard Seams show a prolonged episode of elevated land surfaces as the dry flora dominates over the wet flora. The succeeding horizon, namely, the Lower Nine Feet Seam shows a brief episode of a wet flora dominating. In the 3 succeeding horizons, the Six Feet, Nine Feet and Four Feet Seams, there is a recurrence of the dominance of the dry flora. This episode represents a fair duration of time.

A period of depression with swamps and marshes follows and continues into the 4 succeeding horizons, namely, the Four Feet Rider, Two Feet Nine, Three Coals (B) and the Lower Gorllwyn Seams. After this an uplifting of land takes place with a period of dry flora which is represented in 2 horizons, namely, the Gorllwyn and Lower Pentre Seams.

Another brief episode of wet flora follows and appears in a single horizon, *i.e.*, the Two Feet Nine Seam. A prolonged episode of elevation of land surface then occurs, giving a continuous dry flora on no less than 9 successive horizons, namely, the Abergorky, Hafod, Hafod Rider, No. 3 Rhondda, Three Coals (A), No. 2 Rhondda, Fforest Fach, No. 1 Rhondda, and No. 1 Rhondda Rider Seams. Without doubt we have a period of time with elevated lands persisting, giving an easy dominance to ferns and fernlike plants over the wet flora as represented in the class Lycopodiales.

A third brief episode of wet flora occurs in a single horizon, namely, the Cefn Glas Seam. After this, the last episode is of elevated land surfaces, with dry flora continuing upwards in the 4 highest horizons, namely, the Daran Ddu, No. 3 Llantwit, No. 2 Llantwit, and No. 1 Llantwit Seams. (No. 1 Llantwit is the top seam in the Coal Measures examined.)

Thus during the Westphalian times we have four episodes of dry flora. The first episode was prolonged in time but the second and third episodes were of short duration. The fourth episode was very prolonged, because it commenced in the third horizon from the top of the Westphalian Series and continued upwards into the Staffordian Series, passing upwards through no less than 6 horizons in the latter series.

Again, a fifth episode of dry flora of long duration commenced in the uppermost horizon of the Staffordian Series and continued up to the period represented by the highest horizon in the Radstockian Measures preserved in the district. There were also four episodes of wet flora, three of them in the Westphalian Series. The first was of brief duration, the second was rather more prolonged as it continued through 4 successive horizons. The third and fourth episodes were both of brief duration.

Of the 29 horizons no less than 15, or 52 per cent., show a dominance of intermediate flora; 10, or 35 per cent., have a dominance of dry flora, and 4, or 13 per cent., of wet flora. If we are to believe that the Lycopodiales are essentially a wet flora, and

150 D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

that the fern and fernlike plants are essentially a dry flora, we must conclude that the consistent recurrence throughout the 29 horizons of these classes (showing the dominance of one over the other, *i.e.*, the reaction of the wet and dry flora) is evidence and that the physical conditions were the principal factors that determined the distribution and relative proportions of these plants. Elevation and depression of land surfaces were the direct causes of the difference in the flora found in the various shales.

We may now consider whether there is any evidence that uplifted land surfaces were accompanied by deeper water conditions. The strata between any two coal seams furnish an approximate measure of the amount of subsidence that occurred between the formation of the two seams. The actual amount of subsidence cannot be known exactly because the original sediments were laid down more or less in a plastic state, and therefore must have occupied far greater bulk than is shown in their present compressed form.*

The maximum thickness of strata between certain pairs of coal seams is no less than 300 feet, indicating a maximum depression of the sea or delta floor between such seams. However, the thickness of the intervening strata serves to give us the relative " peak points " from seam to seam. If the dry and wet flora indicate respectively elevated and swampy conditions of land surface, in relation to sea-level, we may proceed further with this enquiry and draw certain conclusions as to the probable elevation of land surfaces above the sea-level and the probable depression of the sea floors from time to time.

Eighteen of the twenty-nine horizons indicate either elevated or swampy conditions of land surface with deep or shallow sea bottoms accompanying. On the other hand, the 11 remaining horizons fail to show the elevations and swampy conditions of land surfaces. In other words we have positive evidence of 62 per cent. of elevated or swampy land surface, accompanied by a corresponding deep or shallow sea-floor, as the case may be. There is also the negative evidence of 38 per cent. elevated or swampy lands. Thus there is a ratio of nearly two to one in favour of elevations of land being followed by corresponding deeper water conditions, and also of swampy conditions of land surface being followed by a corresponding shallow or delta floor.

The maximum thickness of strata between certain pairs of coal seams lies between 100 and 300 feet, and if it is safe to assume that we have a corresponding elevation of land above the water level or delta prevailing, upon which the Filicales and Pteridosperms, the dry flora, would show their dominance, we could also assume that from zero to 20 feet above water level or delta would show the dominance of the wet flora, namely, the Lycopodiales.

If we are correct in our assumption that the two extreme floras for wet and dry conditions respectively, are the Lycopodiales, Filicales and Pteridosperms, then the maximum development of the intermediate flora, namely, the Cordaitales and

* For discussion on this point see W. G. FEARNSIDES, 'Trans. Inst. Mining Engineers.'

BIOLOGICAL

THE ROYAL SOCIETY

PHILOSOPHICAL TRANSACTIONS

THE COAL MEASURES IN EAST GLAMORGANSHIRE.

Equisetales, must lie at an intermediate position about 60 feet above water level and would diminish in their number with either increase or decrease in the height of ground from this critical level. (See accompanying Chart VI (a).)

Explanation of Chart VI, Part (a).

(a) The "peak points" represent the assumed height of land surfaces above sea-level that give dominance to different classes of plants on the 29 horizons.

(b) The "peak points" below sea-level represent the actual mean thickness of strata intervening between the coal seams of the 29 horizons and denote the amount of subsidence of the sea-floor to form the strata from one seam to another.

Lycopodiales = 0-20 feet (wet flora); Equisetales and Cordaitales = 20-100 feet (intermediary flora); Filicales and Pteridosperms = 100-300 feet (dry flora).

Two significant facts come to light:—(a) pairs of seams, widely separated from one another, show dominance of fern and fernlike plants or dry flora, and (b) pairs of seams, close together, show dominance of the Lycopodiales or wet flora.

Faunal.

Faunal remains on the whole are somewhat rare, and of the different genera, Carbonicola, Anthracomya and Naiadites are sometimes very rare. At other times they appear in well-defined bands, but how far such bands extend laterally is not known.

A significant fact is that on horizons where plants of the class Lycopodiales are dominant, shell bands generally occur. Further, the shales in such bands are of a carbonaceous nature. Possibly swampy lagoons with brackish water conditions would have a disastrous effect on the Mollusca, owing to the poisoning of the waters. (Hydrocarbons due to decaying vegetation would have strongly impregnated the sluggish waters.) Fresh-water shells exist under such conditions to-day.

The soft black sediments themselves would be covered with dead vegetable tissue, with the result that the Mollusca would perish on the spot. The shells appear in all stages of growth in the black shales. Every slab of shale is covered with their remains in an uncrushed state, showing clearly that they died on the spot where they once lived.

The small shells of Spirorbis are found on Cordaite leaves and in the pinnules of Neuropteris, Alethopteris and Mariopteris.

A few examples of worm burrows were found on the bedding surfaces of some of the fine-grained shales. Insect remains were found low down in the Westphalian Series on horizon 25, the Lower Nine Feet Seam. They also occur sparsely in a few other horizons above in the measures. There is only one solitary record of Prestwichia. This Arthropod appeared on horizon 11, the lowest horizon in the Staffordian Series, namely, the No. 3 Rhondda Seam.

Although a good number of horizons show Mollusca rather plentifully, yet despite careful search, there are only 3 horizons in which records of fish remains were found, namely, horizons 26, 25 and 21, which are the Bute, Lower Nine Feet and Four Feet "Rider" Seams, respectively.

152

D. DAVIES ON CORRELATION AND PALÆONTOLOGY OF

SUMMARY. (See Chart VI (b), (c), (d).)

1. The coal seams are of three types, namely, the "Regional," "Split" and "Local" types.

2. The lithology of the Coal Measures consists of about 80 per cent. shale in the Westphalian Series and about 90 per cent. sandstone in both Staffordian and Radstockian Series.

3. The shales overlying the various horizons show the dominance of a certain class of plants.

4. The dominance of a certain class of plants may be of a brief or long duration.

5. Probably the elevation or depression of land surfaces is the principal factor for the altered flora on the different horizons.

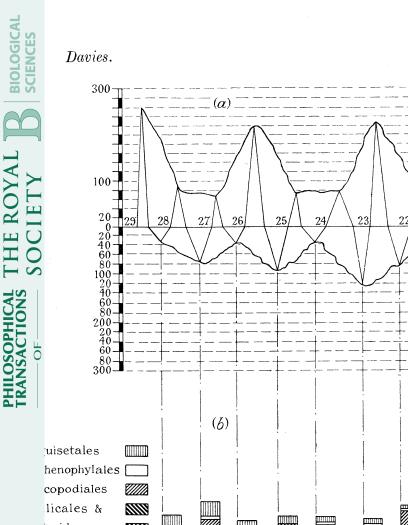
6. Horizons where Filicales and Pteridosperms dominate the other classes of plants show the greatest number of species of the different classes of plants.

7. Horizons where Lycopodiales dominate show the least number of species of the different classes of plants.

8. Filicales and Pteridosperms accompany an episode of elevated land surface (dry flora). Lycopodiales represent an episode of swampy conditions (wet flora).

9. Upraised land surface is followed by an increase in the number of species of the different classes of plants.

10. Depressed land surface is followed by a decrease in the number of species of the different classes of plants.


11. The Westphalian Series show the dominance of the Equisetales over the other classes of plants, whereas both the Staffordian and Radstockian Series show the dominance of the Filicales and Pteridosperms.

12. Probably the Westphalian Series with its 80 per cent. shale is more or less of a lowland condition, whereas both the Staffordian and Radstockian Series with their 90 per cent. sandstone show a more or less elevated condition of land surface.

13. Mollusca, when present on certain horizons, were dominated in each case by Lycopodiales. This suggests that the habitat was deltaic or brackish water rather than marine.

14. Fish remains were rarely found in the Coal Measures.

15. Insect remains were found near the base of the Westphalian Series.

THE ROYA

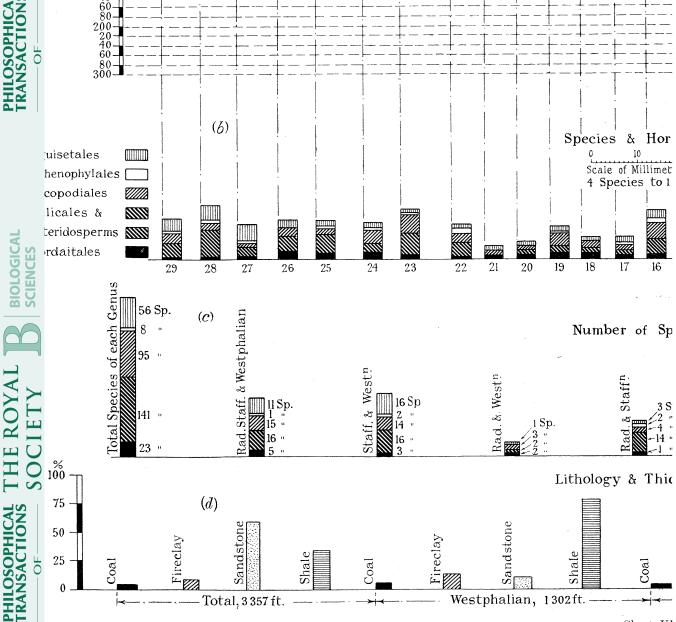
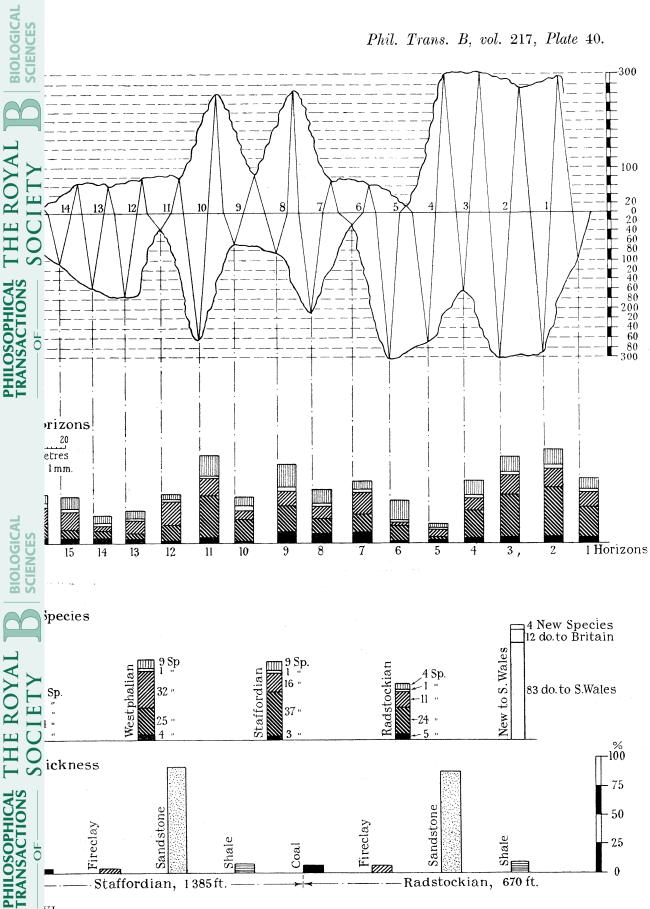



Chart VI

17

16

2

VI.

153

VIII. LITERATURE.

Appended is a short list of the authorities which I have consulted :-----

- KIDSTON, R., "Fossil Plants of the Carboniferous Rocks of Great Britain," Memoirs of the Geological Society of Great Britain. Palæontology, vol. 2, Parts I-VI.
- Idem., "Fossil Flora of the South Wales Coalfield and the relationship of its Strata to the Somerset and Bristol Coalfield," 'Trans. Royal Society, Edin.,' vol. 37 (1894), pp. 565-614.
- Idem., "On the Fossil Flora of the Yorkshire Coalfield" (Second paper), *ibid.*, vol. 38 (1897), pp. 33-62.
- Idem., "Contributions to our Knowledge of British Palæozoic Plants. Part I. Fossil Plants from the Scottish Coal Measures," *ibid.*, vol. 2 (1916), pp. 709–20.
- Idem., "Fossil Flora of the Staffordshire Coalfield," ibid., vol. 2 (1916), pp. 73-190.
- Idem., "Fossil Plants of the Forest of Wyre and the Titterstone Clee Hill Coalfields," ibid., vol. 2 (1917), pp. 199–208.
- Idem., "Les Vegetaux Houillers recueillis dans le Hainaut, Belge," 'Mem Mus. R. Hist Nat. Belg., vol. 4 (1911), pp. 268.
- KIDSTON, R., and JONGMANS, W. J., "A Monograph of the Calamites of Western Europe," 1917, p. 207.
- SCOTT, D. H., "Studies in Fossil Botany," 2nd edition, 1909.
- SEWARD, A. C., "Fossil Plants," vols. 1-3, 1898-1917.
- STOPES, MARIE C., "The Fern Ledges. Carboniferous Flora of St. John (New Brunswick)," Mem. Geol. Survey, Canada,' No. 41 (Geol. Ser. 38), 1914, pp. 167.
- GOODE, R. H., "On the Fossil Flora of the Pembrokeshire Portion of the South Wales Coalfield," 'Q.J.G.S., vol. 99 (1913), pp. 252-76.
- LOGAN, W. E., 'Trans. Geol. Soc.,' Ser. 2, vol. 6 (1842), pp. 491-97.
- BENSON, STARLING, 'Rep. Brit. Assoc. 1848 Trans.,' p. 64.
- VON ZITTEL, KARL, "Text Book of Palæontology," English Edition, by C. R. Eastman, 1913 (Macmillan).
- BOLTON, HERBERT, "Fossil Insects of the British Coal Measures," 'Palæontographical Society,' 1919–20.
- HIND, WHEELTON, "Carbonicola, Anthracomya and Naiadites," 'Palæontographical Society, 1894–96.
- TRAQUAIR, RAMSAY H., "Ganoid Fishes of the British Carboniferous Formations, Part I, Palæoniscidal," 'Palæontographical Society,' 1877–1914.
- FEARNSIDES, W. G., 'Trans. Inst. Mining Engineers.'
- KENDALL, P. F., 'B.A. Rep.,' 1922.

BIOLOGICAL

THE ROYAL B SOCIETY

TRANSACTIONS

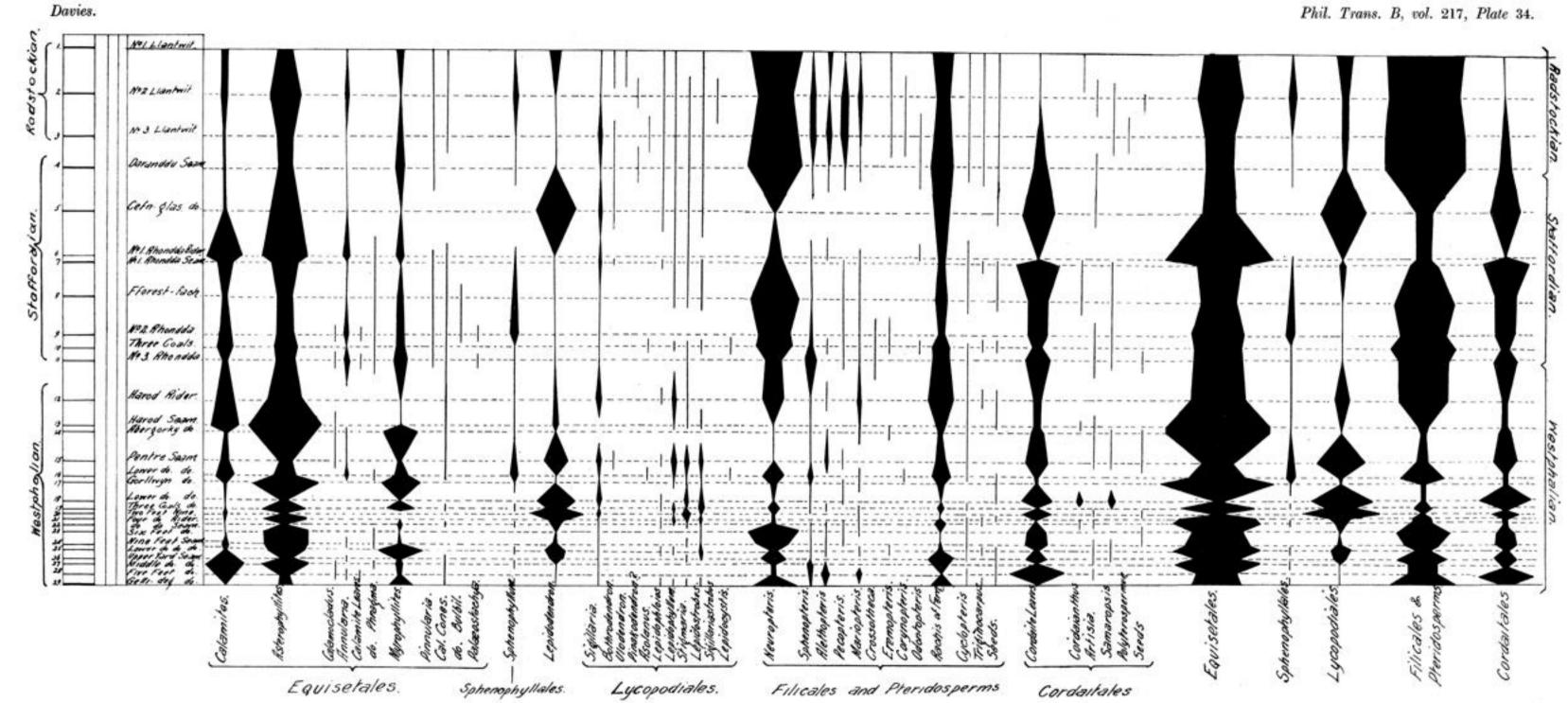


Chart II.-Ecology.

THE ROYAL SOCIETY

PHILOSOPHICAL TRANSACTIONS

BIOLOGICAL SCIENCES

THE ROYAL B SOCIETY

PHILOSOPHICAL TRANSACTIONS

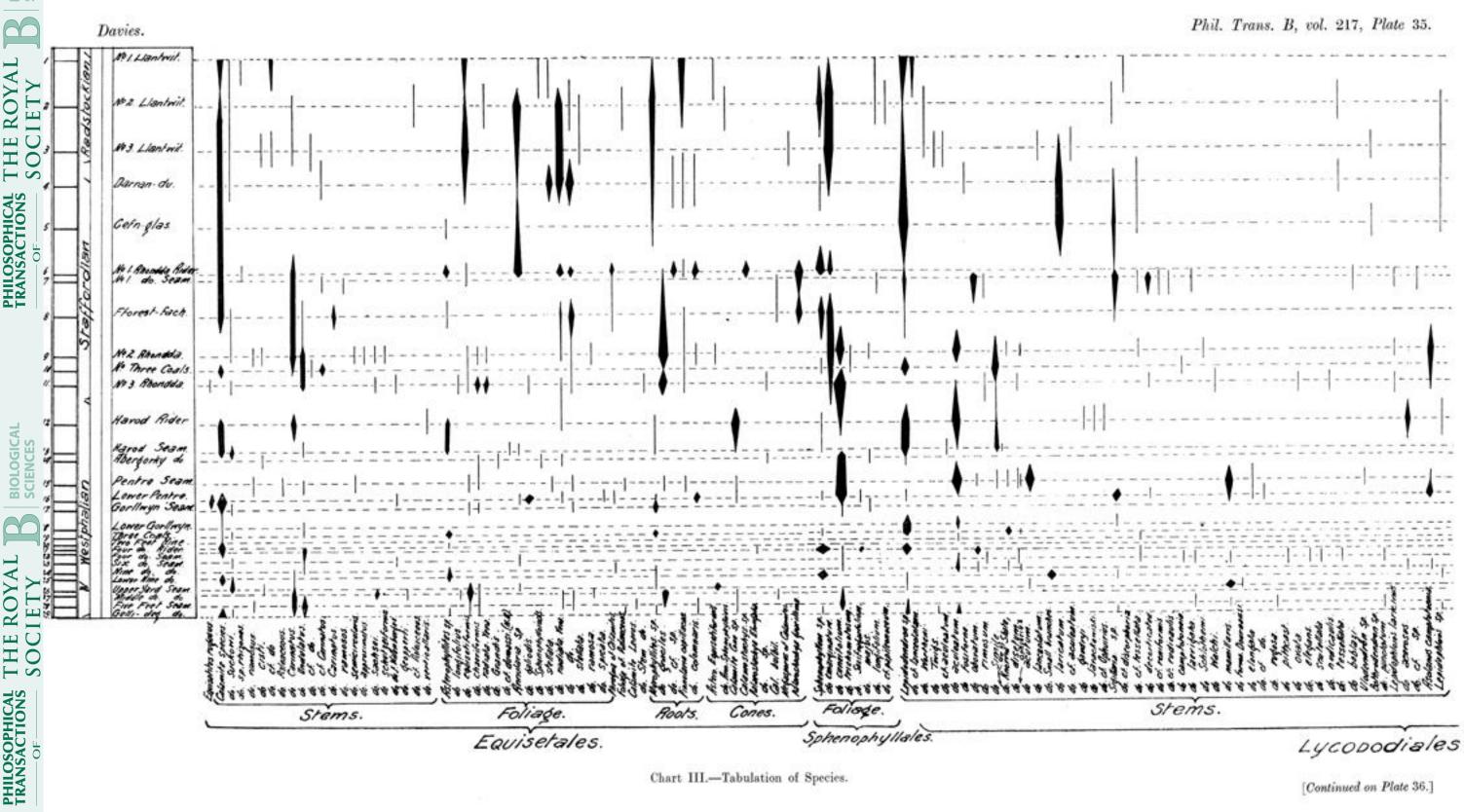
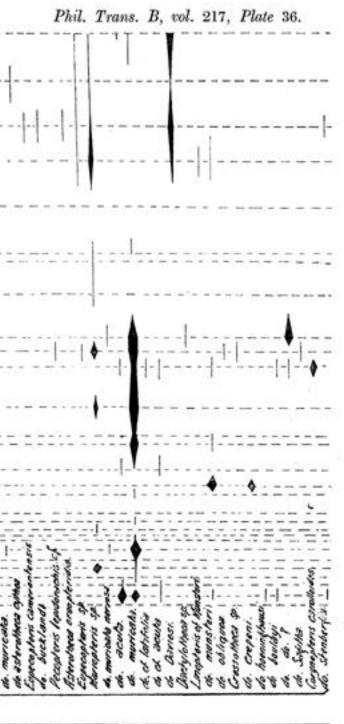
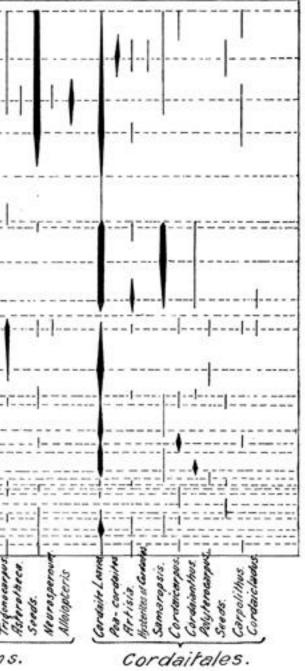



Chart III .- Tabulation of Species.

BIOL

[Continued on Plate 36.]

PHILOSOPHICAL TRANSACTIONS OF	Sistere verter variation of the second secon	Roots, Cones.	Seeds Cons	89638343898666988888	486436688888666888888888888888888888888	Filica
Soci THE F	A second se	There is a second secon	trapert of the	All and a second	Findenskiel Gildense Cildense Kissenserjonel Kanagerense Kanagerense Cinstellen Connection Connecti	Sfeers Strengther
ROYAL CIETY						-1-1-
	•,					•
OLOGICAL CIENCES	·	····	- - - 	-	······································	
			· · · · · · · · · ·			·
PHILOSOPHICAL TRANSACTIONS		· · · · · · · · · · · · · · · · · · ·	·			
		· · · · · · · · · · · · · · · · · · ·				
THE ROY/ SOCIETY	Davies.		<u> </u>			
	I MLI IFS					


ales and Pteridosperms.

[Concluded on Plate 37.]

Davies.	·····		
3 Nº 2. Llantril.			
s Nº 3. Llantnit.			
e Daranddu.		••	
s Coin-glas.			
e Nº I Rhondida Bain Nº I Rhondida San			
, Morest lack.			·····
AP 2. Abondela. Three Coals. M.3. Abondela.			
Harod , Seber Harod , Seber Harod Seam. Abergarky do.			
Albergarky de. Albergarky de. Paulire Seame. Lower Pantre. 2 Gerlingin.			
Control Gardingel			
Anne / out Sand			
5	Econdition Calimatics Calimatics Alterrophylitic Alterrytylitic Calancie Lorro ci. phrogens calancie Core Plenularia Calance to the Calance to the Calance to the	Lepidedendre Sigillaria. Bothrodendra Bothrodendra Asolarus. Lepidephyllon Sigillaria etrabu Sigillaria etrabu de. stems de. stems de. stems Sigillaria forbos formation a	Sphenopteris. Sphenopteris. Recupteris. Recupteris. Ergenopteris. Spiropteris. Galeryphum Crossothnee. Crossothnee. Crossothnee. Crossothnee. Crossothnee. Crossothnee. Spileris. Remopteris Recusteris. Bootis of Fer. Microspernee.
	Equisetales.	Lycopodiales.	Filicales and Pteridospe

Chart IV .--- Divergence and Convergence of Species.

Phil. Trans. B, vol. 217, Plate 38.

s.

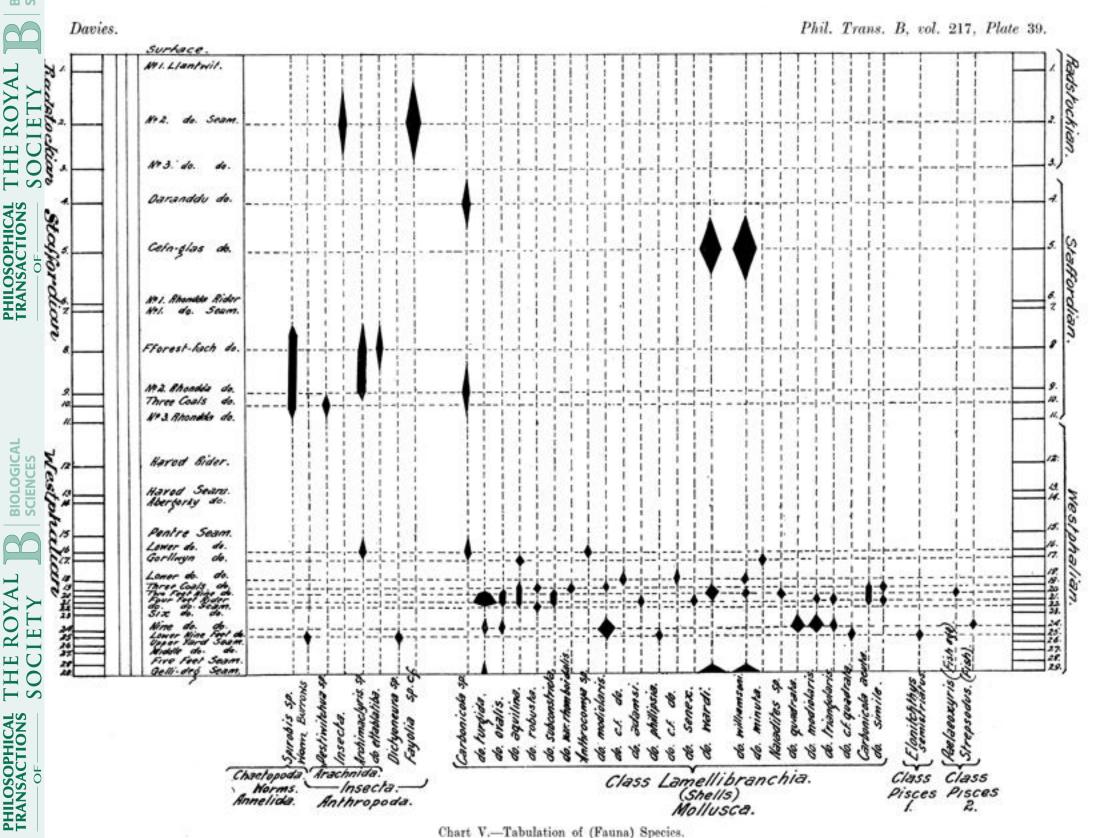
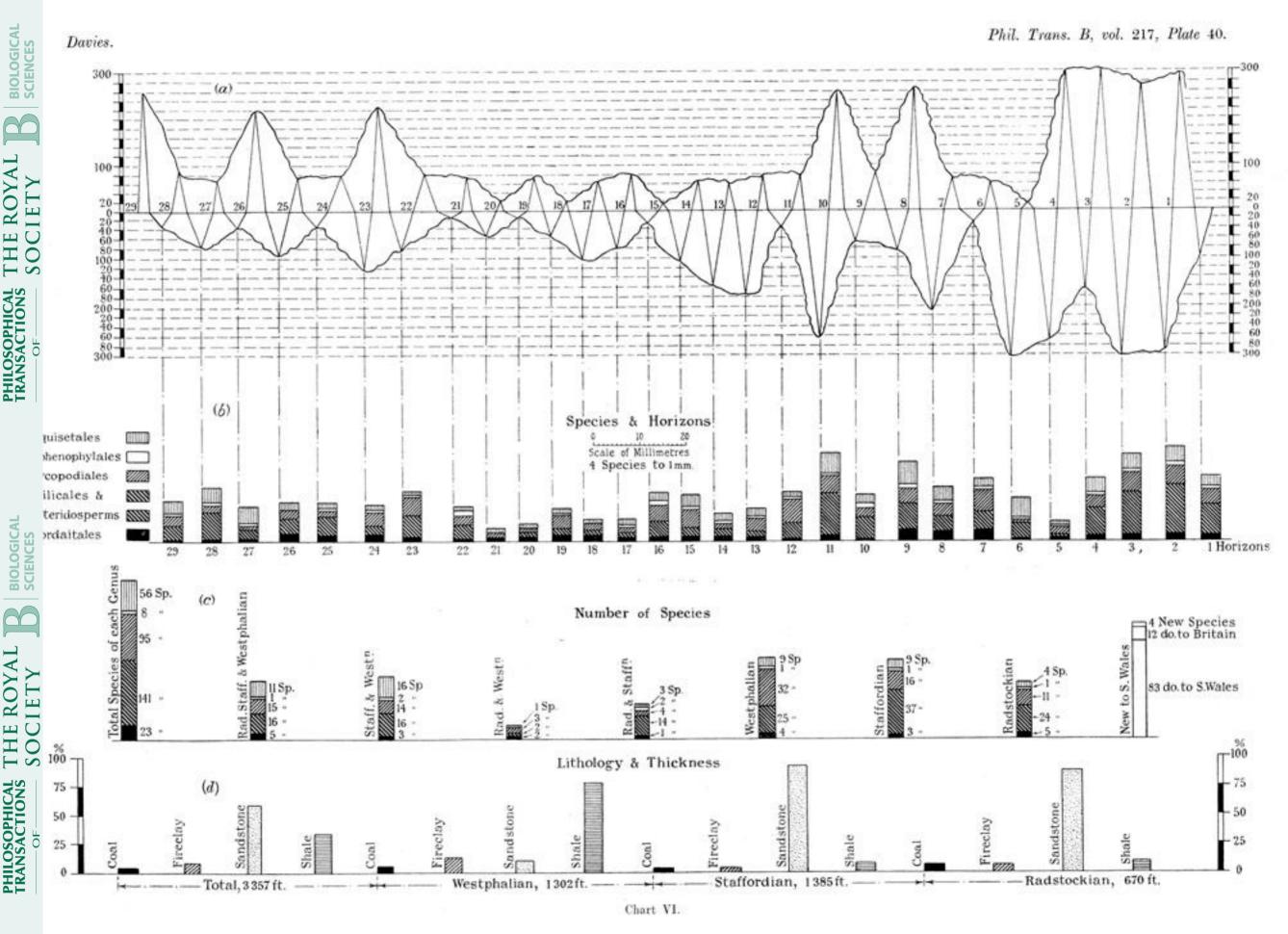



Chart V .- Tabulation of (Fauna) Species.

M M

